

[Team LiB]

 Table of Contents
 Index
 Reviews
 Reader Reviews
 Errata
RADIUS
By Jonathan Hassell

Publisher: O'Reilly
Date

Published
: October 2002

ISBN: 0-596-00322-6
Pages: 206

RADIUS, or Remote Authentication Dial-In User Service, is a widely deployed protocol that enables companies to
authenticate, authorize and account for remote users who want access to a system or service from a central network
server. RADIUS provides a complete, detailed guide to the underpinnings of the RADIUS protocol. Author
Jonathan Hassell brings practical suggestions and advice for implementing RADIUS and provides instructions for
using an open-source variation called FreeRADIUS.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

http://www.oreilly.com/catalog/radius/reviews.html
http://www.oreilly.com/cgi-bin/reviews@bookident=radius
http://www.oreilly.com/catalog/radius/errata/default.htm
http://www.oreillynet.com/cs/catalog/view/au/915@x-t=book.view

[Team LiB]

 Table of Contents
 Index
 Reviews
 Reader Reviews
 Errata
RADIUS
By Jonathan Hassell

Publisher: O'Reilly
Date

Published
: October 2002

ISBN: 0-596-00322-6
Pages: 206

 Copyright
 Preface
 Audience
 Organization
 Conventions Used in This Book
 How to Contact Us
 Acknowledgments

 Chapter 1. An Overview of RADIUS
 Section 1.1. An Overview of AAA
 Section 1.2. Key Points About AAA Architecture
 Section 1.3. The Authorization Framework
 Section 1.4. And Now, RADIUS

 Chapter 2. RADIUS Specifics
 Section 2.1. Using UDP versus TCP
 Section 2.2. Packet Formats
 Section 2.3. Packet Types
 Section 2.4. Shared Secrets
 Section 2.5. Attributes and Values
 Section 2.6. Authentication Methods
 Section 2.7. Realms
 Section 2.8. RADIUS Hints

 Chapter 3. Standard RADIUS Attributes
 Section 3.1. Attribute Properties

This document is created with the unregistered version of CHM2PDF Pilot

http://www.oreilly.com/catalog/radius/reviews.html
http://www.oreilly.com/cgi-bin/reviews@bookident=radius
http://www.oreilly.com/catalog/radius/errata/default.htm
http://www.oreillynet.com/cs/catalog/view/au/915@x-t=book.view

 Chapter 4. RADIUS Accounting
 Section 4.1. Key Points in RADIUS Accounting
 Section 4.2. Basic Operation
 Section 4.3. The Accounting Packet Format
 Section 4.4. Accounting Packet Types
 Section 4.5. Accounting-specific Attributes

 Chapter 5. Getting Started with FreeRADIUS
 Section 5.1. Introduction to FreeRADIUS
 Section 5.2. Installing FreeRADIUS
 Section 5.3. In-depth Configuration
 Section 5.4. Troubleshooting Common Problems

 Chapter 6. Advanced FreeRADIUS
 Section 6.1. Using PAM
 Section 6.2. Proxying and Realms
 Section 6.3. Using the clients.conf File
 Section 6.4. FreeRADIUS with Some NAS Gear
 Section 6.5. Using MySQL with FreeRADIUS
 Section 6.6. Simultaneous Use
 Section 6.7. Monitoring FreeRADIUS

 Chapter 7. Other RADIUS Applications
 Section 7.1. RADIUS for Web Authentication
 Section 7.2. Using the LDAP Directory Service
 Section 7.3. Parsing RADIUS Accounting Files

 Chapter 8. The Security of RADIUS
 Section 8.1. Vulnerabilities
 Section 8.2. The Extensible Authentication Protocol
 Section 8.3. Compensating for the Deficiencies
 Section 8.4. Modifying the RADIUS Protocol

 Chapter 9. New RADIUS Developments
 Section 9.1. Interim Accounting Updates
 Section 9.2. The Apple Remote Access Protocol
 Section 9.3. The Extensible Authentication Protocol
 Section 9.4. Tunneling Protocols
 Section 9.5. New Extensions Attributes

 Chapter 10. Deployment Techniques
 Section 10.1. Typical Services
 Section 10.2. RADIUS and Availability
 Section 10.3. Other Things RADIUS

 Appendix A. Attribute Reference
 Colophon
 Index
[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

Copyright

Copyright 2003 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. The association between the image of a Dolium shell and the topic of RADIUS is a trademark of
O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

http://safari.oreilly.com/default.htm
mailto:corporate@oreilly.com

[Team LiB]

Preface

"Trust no one."

Aside from being the motto and modus operandi for the successful TV series The X Files, it is also a beneficial
mantra to practice in all facets of security and investigation. Even though chances are good that you won't encounter
Mulder, Scully, and their gang, they still teach a concept that's become increasingly relevant as the world—and the
world's computers—become connected.

Companies today are increasingly basing their business models around providing access to resources—web pages,
Internet access, email accounts, or anything else—that need to be protected. How does a user indicate to a system,
especially one that indeed trusts no one, that he's entitled to use that computer's services? How can the owner of a
business keep non-paying users out of the way while providing convenient access to paying customers? The bottom
line is this: with new security exploits being uncovered every day and the general environment of the Internet public
degenerating from a trusted environment into one of hostility and attack, there has to be some way in which an
Internet citizen can use resources to which he's entitled without letting everybody else in the gates.

This is the purpose of the RADIUS protocol—to differentiate, secure, and account for these users. And the purpose
of this book is to provide the most complete reference to RADIUS possible.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

Audience

This book is designed to serve all manner of readers. There's enough introductory information to give a complete,
generalized background for the administrator not familiar with the protocol. There's practical, day-to-day, hands-on
information for those tasked with configuring and using RADIUS servers. There's design-level information for
programmers who need to write custom applications to integrate RADIUS. In other words, there's something in this
book for everyone.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

Organization

I have tried to structure this book as effectively as possible, mixing theory with practice where appropriate, so you,
the reader, have a firm background with which to apply both the practical advice and procedures in this book and
others you may develop on your own.

Chapter 1 takes a few steps backward and looks at the architectural model on which the RADIUS protocol is
based, provides an introduction to RADIUS's characteristics and limitations, and offers a brief discussion of its
history.

Chapter 2 details the individual characteristics of the RADIUS protocol, including an overview of its standard packet
formats and the structure of the properties it passes to various servers, as well as a discussion of how vendors extend
the functionality of the protocol through the use of their own defined attributes. There is also commentary on the
various authentication protocols that can be used in conjunction with RADIUS, as well as a brief introduction to the
hints file.

Chapter 3 is a reference section for all of the globally defined RADIUS attributes as specified in the appropriate RFC
documents. An "at a glance" chart details each attribute's primary properties with a short discussion of its purpose.
Any special behaviors that an administrator might encounter during its use are covered in this discussion.

Chapter 4 is presented as a combination of the stylistic elements of Chapter 2 and Chapter 3 and covers the
properties, behaviors, and attributes of the accounting portion of the RADIUS protocol. It discusses standard
accounting packets, proxy functionality, and the standard accounting attributes as specified by the RFCs.

Chapter 5 is the first hands-on chapter in the book. It discusses obtaining, installing, configuring, and using
FreeRADIUS, an open source RADIUS server that was created in part by several developers of the Debian Linux
distribution.

Chapter 6 continues the practical guidance and covers the more intimate and intricate configuration options that
FreeRADIUS provides. In addition, extending FreeRADIUS's functionality is covered, by having it authenticate
against a MySQL database, use the pluggable authentication module (PAM) in its transactions, and interact with
Cisco networking gear. Simultaneous use, also known as multilinking in the ISP business, is also covered.

Chapter 7 discusses other programs to augment FreeRADIUS, including an Apache module that will allow the web
server to authenticate against the RADIUS user database, a powerful email and directory server that will consolidate
user information and reduce administrative headaches, and a utility for parsing and analyzing RADIUS log files.

Chapter 8 is a commentary on some of the security problems the protocol has and how to work around them.
Unfortunately, the protocol used to secure networks has some vulnerabilities of its own, and this chapter offers insight
into what the vulnerabilities are, how they were introduced, and what an administrator can do to eliminate the
potential threat they represent.

Chapter 9 includes information that's not present in the original RFC documents for the protocol. Among these new
details are information on tunnel support, Apple networking support, interim accounting updates, using Extensible
Authentication Protocol (EAP), and a listing—like that of Chapter 3—of the new attributes added by the RADIUS
Extensions RFC.

Chapter 10 concludes the book by offering design guidelines and practical suggestions for planning a RADIUS server
deployment in your organization. Topics include services, availability, system baselining, and proactive/reactive
system management.

Appendix A is a list of all of the RADIUS attributes covered within the book, a few of their key properties, and
cross-references by page number.

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

Conventions Used in This Book

•

Italic is used for filenames, directories, URLs, emphasis, and the first use of technical terms.

•

Constant width is used for IP addresses, configuration file operators, and packet names and attributes.

•

Constant width bold is used for user input.

This icon designates a note, which is an important aside to nearby text.

This icon designates a warning relating to the nearby text.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

How to Contact Us

Please address comments and questions concerning this book to the publisher:
 O'Reilly & Associates, Inc. 1005 Gravenstein Highway North Sebastopol, CA 95472 (800) 998-9938 (in the
United States or Canada) (707) 829-0515 (international or local) (707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional information. You can access
this page at:
 http://www.oreilly.com/catalog/RADIUS

To comment or ask technical questions about this book, send email to:
 bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web site
at:
 http://www.oreilly.com

The author has created a comprehensive web site to support this book, located at http://www.theradiusbook.com.
You can find an overview, the table of contents, a listing of errata, sample code, and many other resources at that site.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

http://www.oreilly.com/catalog/RADIUS
mailto:bookquestions@oreilly.com
http://www.oreilly.com/default.htm
http://www.theradiusbook.com/default.htm

[Team LiB]

Acknowledgments

A variety of people came together to make this book possible. My publisher, O'Reilly, has made the writing and
production of this book proceed as smoothly as possible. I'd also like to extend heartfelt thanks to my editor, Jim
Sumser. I've sat here for an hour attempting to come up with fifty words that could adequately describe what a
genuinely fine man Mr. Sumser is, and I conclude it's not possible. Rarely in life are you provided an opportunity to
work with such a gentlemen and professional. Jim defines those qualities, and I am better for it.

I'd also like to thank the fine folks at Equipment Data Associates (EDA) in Charlotte, North Carolina for offering me
an opportunity to work and write. The flexibility I was granted in working with EDA was a godsend and delayed the
onset of gray hair on me by at least two years. Mason Dunlap, my supervisor, and Bill Howell, a longtime friend,
neighbor, and role model, were particularly encouraging and even interested (or at least they did a fabulous job of
feigning said interest) in the progress of the book. My debt of gratitude to them is enormous.

Mike and Debbie Hassell, my father and mother, were also supportive and caring. I hope I do justice to their
expectations. Thanks also to Aaron and Julie Slyter for their friendship, Tom Syroid for the inspiration to write
books, and Robert Bruce Thompson for guidance.

Special thanks to Alan DeKok of the FreeRADIUS project and Niels Jonker of Boingo Wireless for their timely and
Herculean efforts to review this book. I believe I owe both of them a couple of beers.

Last but by no means least, my longtime girlfriend, Anna Watson, was by my side through thick and thin and suffered
through more than one weekend during which I was focused on email and chapter writing instead of romantic dinners
and movie watching. I suspect she will require an approval form signed in triplicate before I write another book.
(Who can blame her?) This book would never have gotten off the ground were it not for her support and love.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

Chapter 1. An Overview of RADIUS

In an ideal world, we wouldn't have to use authentication of any type to gain access to anything. But as long as free
enterprise exists and access to private resources is sold, authentication will exist.

You may have experienced authentication as recently as an hour ago, when you used a dial-up Internet account to
log on and surf the Web for the latest headlines. You may have checked your corporate email on your PalmPilot to
see if your biggest client had returned your message about the newest proposal. And this weekend, when you use a
VPN to connect to your office network so you can revise that presentation that's due early Monday morning, you'll
have to authenticate yourself.

But what goes on behind the scenes when you prove your identity to a computer? After all, the computer has to have
a set of processes and protocols to verify that you are indeed who you say you are, find out what you are allowed to
access, and finally, tell you all of this. There's one protocol that does this all: the Remote Access Dialin User Service,
or RADIUS.

RADIUS, originally developed by Livingston Enterprises, is an access-control protocol that verifies and authenticates
users based on the commonly used challenge/response method. (I'll talk more about challenge/response
authentication later.) While RADIUS has a prominent place among Internet service providers, it also belongs in any
environment where central authentication, regulated authorization, and detailed user accounting is needed or desired.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

1.1 An Overview of AAA

The framework around which RADIUS is built is known as the AAA process, consisting of authentication,
authorization, and accounting. While there's nothing specific to RADIUS in the AAA model, a general background is
needed to justify most of RADIUS's behavior. RADIUS was created before the AAA model was developed, but it
was the first real AAA-based protocol exhibiting the AAA functionality to earn industry acceptance and widespread
use. However, that's not to say there aren't other protocols that satisfy the architecture's requirements.

This model serves to manage and report all transactions from start to finish. The following questions serve well as a
mimicking of the functionality by asking:

•

Who are you?

•

What services am I allowed to give you?

•

What did you do with my services while you were using them?

To begin, let's look at why the AAA architecture is a better overall strategy than others. Before AAA was
introduced, individual equipment had to be used to authenticate users. Without a formal standard, each machine likely
had a different method of authentication—some might have used profiles, while others might have used
Challenge/Handshake Authentication Protocol (CHAP) authentication, and still others might have queried a small
internal database with SQL. The major problem with this helter-skelter model is one of scalability: while keeping
track of users on one piece of network equipment might not be a huge manageability obstacle, increasing capacity by
adding other equipment (each with its own authentication methods) quickly ballooned the process into a nightmare.
Kludgy scripts were written to halfway automate the process, but there was no real way to monitor usage,
automatically authenticate users, and seamlessly provide a variety of services.

The AAA Working Group was formed by the IETF to create a functional architecture that would address the
limitations of the system described above. Obviously, there was a need to focus on decentralizing equipment and
monitoring usage in heterogeneous networks. ISPs began offering services other than just standard dial-up, including
ISDN, xDSL, and cable-modem connectivity, and there needed to be a standard way in which users could be
verified, logged on, and monitored throughout the network. After much work, the AAA architecture was born.

A Word About Terminology

When discussing AAA and RADIUS, the terms "client" and "server" often come up. However, there can
be some confusion about which of these roles a particular machine is playing in a specific transaction.
Let's take a look at each of these roles.

A client, in the traditional sense, is a machine that makes requests of and uses resources on another
machine. In the AAA framework, and with RADIUS specifically, the client can be the end user who
wants to connect to a network's resources—in other words, a service consumer. However, in another
context, an AAA client can be the machine that sends AAA-style packets to and from an AAA server.
This is the strictest sense of the "client" term.

A server is commonly known as the machine of which clients request resources. In AAA, this can be the
network server—a NAS machine or some other concentrator—or an AAA server that authenticates,
authorizes, and performs accounting functions. How the word "server" is meant really depends on the
context of the architecture on which the discussion is based.

In this book, I will use the contextually based meanings of these terms interchangeably, as there is no
clear-cut and non-kludgy method to provide any additional degree of consistency. I have tried to
specifically identify clients and servers as AAA or RADIUS clients and servers where possible.

The AAA model focuses on the three crucial aspects of user access control: authentication, authorization, and
accounting, respectively. I will now take a closer look at each of these steps.

1.1.1 Authentication

Authentication is the process of verifying a person's (or machine's) declared identity. You're familiar with the most
common form of authentication, using a combination of logon ID and a password, in which the knowledge of the
password is a representation that the user is authentic. Distributing the password, however, destroys this method of
authenticating, which prompted creators of e-commerce sites and other Internet-business transactors to require a
stronger, more reliable authenticator. Digital certificates is one of the solutions here, and over the next five to ten
years it's likely that using digital certificates as a part of the public key infrastructure (PKI) will become the preferred
authenticator on the Internet.

The key aspect of authentication is that it allows two unique objects to form a trust relationship—both are assumed to
be valid users. Trust between systems allows for such key functionality as proxy servers, in which a system grants a
request on behalf of another system and allows AAA implementations to span heterogeneous networks supporting
different types of clients and services. Trust relationships can become quite complex, and I'll talk more about them in
a later section.

1.1.2 Authorization

Authorization involves using a set of rules or other templates to decide what an authenticated user can do on a
system. For example, in the case of an Internet service provider, it may decide whether a static IP address is given as
opposed to a DHCP-assigned address. The system administrator defines these rules.

So-called "smart implementations" of AAA servers have logic that will analyze a request and grant whatever access it
can, whether or not the entire request is valid. For instance, a dial-up client connects and requests multilink bonding.
A generic AAA server will simply deny the entire request, but a smarter implementation will look at the request,
determine that the client is only allowed one dial-up connection, and grant the one channel while refusing the other.

1.1.3 Accounting

Rounding out the AAA framework is accounting, which measures and documents the resources a user takes
advantage of during access. This can include the amount of system time or the amount of data a user has sent and/or
received during a session. Accounting is carried out by the logging of session statistics and usage information and is
used for authorization control, billing, trend analysis, resource utilization, and capacity-planning activities.

Accounting data has several uses. An administrator can analyze successful requests to determine capacity and predict
future system load. A business owner can track time spent on certain services and bill accordingly. A security
analyzer can look at denied requests, see if a pattern emerges, and possibly ward off a hacker or freeloader. The
moral here is that the accounting data is of great utility to an AAA server administrator. I'll cover many uses of
accounting data and strategies for getting the most out of the logs in Chapter 4 and Chapter 7.

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

1.2 Key Points About AAA Architecture

The AAA architecture, simply put, is an attempt to map out a design of how the AAA pieces fit together. AAA
implementations can be as simple or as complex as they need to be, mainly because of the efforts of the Internet
Research Task Force (IRTF) AAA Architecture Working Group to make a model as application-neutral as possible.
In other words, the AAA model is designed to work in environments with varied user requirements and equally
varied network design. There are some key attributes of the model that make this possible.

First, the AAA model depends on the client/server interaction, in which a client system requests the services or
resources of a server system. In simple implementations, these roles generally stick—the server never acts as the
client and vice versa. Client/server environments allow for a good load-balancing design, in which high availability and
response time are critical. Servers can be distributed and decentralized among the network. Contrast this with the
opposite network model, a peer-to-peer (P2P) network. With P2P networks, all systems display characteristics of
both client and server systems, which can introduce such demons as processing delays and unavailability.

A proxying capability is a slight variation of this. An AAA server can be configured to authorize a request or pass it
along to another AAA server, which will then make the appropriate provisions or pass it along again. In essence, a
proxy chain is created, in which AAA servers make requests of both clients and other AAA servers. I said "slight
variation" earlier because when a server proxies another server, the originator displays the characteristics of a client.
Thus, a trust relationship has to be created for each client/server hop until the request reaches equipment that
provisions the needed resources.

Proxying is a very useful feature of the AAA model and a boon to enterprise and distributed network
implementations, in which some AAA equipment can be configured to always proxy requests to machines in other
locations. An example of proxying at its best is with an ISP reseller agreement. Often a major networking company
will make a significant investment in network infrastructure and place points of presence in multiple locations. Armed
with this distributed network, the company then resells to smaller ISPs that wish to expand their coverage and take
advantage of a better network. The reseller has to provide some form of access control over the tangible resources in
each location, but the smaller ISP doesn't wish to share personal information about its users with the reseller. In this
case, a proxying AAA machine is placed at each of the reseller's points of presence, and those machines then
communicate with the appropriate NAS equipment at the smaller ISP.

Clients requesting services and resources from an AAA server (and in this case, clients can include AAA proxies)
can communicate with each other by using either a hop-to-hop or an end-to-end transaction. The distinction is where
the trust relationship lies in the transaction chain. Consider the following circumstances to get a better picture.

In a hop-to-hop transaction, a client makes an initial request to an AAA device. At this point, there is a trust
relationship between the client and the frontline AAA server. That machine determines that the request needs to be
forwarded to another server in a different location, so it acts as a proxy and contacts another AAA server. Now the
trust relationship is with the two AAA servers, with the frontline machine acting as the client and the second AAA
machine acting as the server. It's important to note that the trust relationship is not inherently transitive, meaning that
the initial client and the second AAA machine do not have a trust relationship. Figure 1-1 shows how the trusts are
sequential and independent of each other.

Figure 1-1. Independent trust relationships in a hop-to-hop transaction

Differing from the hop-to-hop model is the end-to-end transaction method. The key difference is, again, where the
trust relationship lies—in this model, it's between the initial, requesting client and the AAA server that finally
authorizes the request. In an end-to-end model, the proxy chain is still very much functional as the model doesn't
necessarily mean the transaction is end-to-end: it's the trust relationship that is. Because it is poor design to pass
sensitive information in proxy requests, some other mean of authenticating a request and validating data integrity is
needed when the initial request jumps through the hops in the proxy chain. Most commonly, digital certificates and
other PKI certifications are used in these situations. RFCs 2903 and 2905 describe the requirements of implementing
end-to-end security, which is shown in Figure 1-2.

Figure 1-2. Client/server trust relationship in the end-to-end model

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

1.3 The Authorization Framework

Moving on in the soup of terminology, we come to the AAA Authorization Framework, an RFC document from the
subset of the AAA Working Group set up by the IETF. Like an architecture document, a framework is designed as a
roadmap, but it tends to be a bit more specific. Frameworks designate how systems interact with one another, but
frameworks generally concentrate more on models specific to certain environments, such as an Internet wholesaler, a
corporate VPN center, or other similar situations.

First, though, we should point out the distinctions in terminology. The authorization framework introduces the concept
of a User Home Organization (UHO), which is an entity that has a direct contractual relationship with an end user.
Also, the Service Provider (SP) is involved, which maintains and provisions the tangible network resources. The
UHO and the SP need not be the same organization; a good example of this is, again, an ISP wholesaler or reseller
that provides its own network resources to other organizations. For the purposes of this overview, I'll first look at
scenarios in which the UHO and SP are one and the same, and then I'll cover a more detailed scenario that is
commonly found.

1.3.1 Authorization Sequences

There are several different methods in which the end user, the AAA server, and the network equipment communicate
during a transaction. Specifically, there are three different sequences in which each machine is contacted.
 The agent sequence

In this sequence, the AAA server acts as a middleman of sorts between the service equipment and the end user. The
end user initially contacts the AAA server, which authorizes the user's request and sends a message to the service
equipment notifying it to set that service up. The service equipment does so, notifies the AAA machine, and the
notification is passed on to the end user, who then begins using the network. This sequence is typically used in
broadband applications in which quality of service (QoS) is part of an existing contract.
 The pull sequence

Dial-in users frequently encounter this sequence. The end user in this situation connects directly to the service
equipment (terminal gear or other NAS machinery), which then checks with an AAA server to determine whether to
grant the request. The AAA server notifies the service equipment of its decision, and the service equipment then
either connects or disconnects the user to the network.
 The push sequence

The push sequence alters the trust relationship between all of the machines in a transaction. The user connects to the
AAA server first, and when the request to the server is authorized, the AAA server distributes some sort of
authentication "receipt" (a digital certificate or signed token, perhaps) back to the end user. The end user then pushes
this token along with his request to the service equipment, and the equipment treats the ticket from the AAA server
as a green light to provision the service. The main distinction is that the user acts as the agent between the AAA
server and the service equipment.

Here are some diagrams of the sequences that visually indicate the authorization transaction sequence.

Figure 1-3 shows the agent sequence, in which an AAA server acts as the middleman between the client and the
service equipment responsible for provisioning the client's request.

Figure 1-3. The agent sequence

Figure 1-4 shows the pull sequence, in which the user contacts the service equipment directly. The equipment then
"pulls" an authorization from the AAA server.

Figure 1-4. The pull sequence

Figure 1-5 shows the push sequence, in which the client system gets an authorization from the AAA server and then
pushes it to the service equipment.

Figure 1-5. The push sequence

1.3.2 Roaming

To add an interesting twist to the progression, let's talk about roaming. The examples I've presented thus far assume
that the service equipment and AAA server are all under the direct control and ownership of a single entity, the user's
home organization (UHO). But what happens when the service equipment is owned and operated by another
organization? This model is called roaming, and the Roaming Operations Working Group (Roamops) has been
formed to explore this situation. Roaming is actually quite common: revisiting an earlier example, a user connecting to
a set of dial-up ports that his ISP is renting from a larger service provider is roaming, since the service equipment is in
another provider's domain.

The same combinations of authorization sequences—agent, push, and pull—are possible with roaming. Figure 1-6
through Figure 1-8 depict typical roaming authorization sequences.

Figure 1-6. The roaming agent sequence

Figure 1-7. The roaming pull sequence

Figure 1-8. The roaming push sequence

1.3.3 Distributed Services

Now consider a situation in which a service provider contracts with numerous wholesalers to provide services to its
user base. For example, a provider could guarantee a certain amount of bandwidth across the country for a particular
company. The frontline ISP with which the company, as a client, contracts needs to set a QoS policy on equipment
across the country to maintain its contractual duty to the customer. The customer, in this situation, is using a
distributed service. Figure 1-9 illustrates this.

Figure 1-9. A model of distributed services

In Figure 1-9, we make the assumption that the user first contacts his UHO and gains authorization from its servers,
which then provision his service from the other organizations involved in his contract. But this is not necessarily the
case. The contacts between the equipment at the first and second organizations can use any of the three authorization
sequences we described earlier. For instance, the user can contact the service equipment in the first hop, using the
pull authorization sequence. Following that, the ISP's equipment will use a push sequence: it will contact the AAA
server at the second organization, obtain authorization, and push the service equipment. This process can be carried
out as many times as necessary to fulfill the frontline ISP's contractual obligations. Figure 1-10 demonstrates this type
of distributed service that involves three different service-provider organizations.

Figure 1-10. Using the push and pull authorization sequences to provide a user with distributed services

These models open up possibilities for new features in protocols based around the AAA design. First, examine the
possibility of an organization using a type of "credit" for another system. For example, the length and traffic of a
certain route from Philadelphia to San Francisco could result in delays for AAA traffic being sent from the east coast
ISP to the west coast ISP. The Philadelphia ISP equipment, knowing about the delays, could proceed and grant
authorization ahead of time to the San Francisco equipment without having express authorization from the west coast
provider. However, there needs to be a provision in whatever AAA-based protocol is used to revoke that
authorization should either the west coast equipment deny the request once it receives it, or the delays be so long that
the response from the San Francisco equipment is lost.

As well, distributed services in concert with roaming can create entirely new business and IT infrastructure models.
For example, an organization could exist solely to provide authentication and authorization functions to a variety of
diverse networks. Such an "AAA broker" would be able to provide AAA services to ISP wholesalers, individual
service providers, and corporations outsourcing their own dial-up pools. The various RFCs that make up the AAA
design allow for such an organization to exist based on the capabilities they specify.

1.3.4 Policies

Policies, in short, are what an AAA server analyzes and uses to determine whether a request is valid and should be
granted. Any server that meets the generic AAA requirements must have some way of storing and retrieving policy
information. These policies are stored in a policy repository, which can be virtually anything that stores information: a
database, a flat text file, or some other storage mechanism. The one key point about the policy repository in general
is that it requires a unique namespace—the name of the server, to be simple—so that remote devices can query and
make requests for that AAA server's resources.

The AAA framework provides for a policy set that spans across multiple domains and entities. It lists three specific
tasks for an AAA server in terms of using policies: they must be retrieved, evaluated, and enforced. How this is done
can vary greatly depending on the environment. It can even involve directory queries via an open-directory protocol,
such as LDAP.

A great deal of work goes into policy evaluation. A simple dial-up user doesn't require much analysis on the part of
the AAA server: it examines a rather simple policy, perhaps one that states whether the user is allowed to log on and
then appropriately answers the request. However, authorization might also involve the provisioning of distributed
services, and current status information could be vital in servicing the request. The AAA server might not have that
information at hand, so it has to have a way to contact the appropriate resources, gather the information it needs, and
then analyze that information against its policy.

Policies can also be distributed. In the previous example, let's say a user requires a 512 KB connection with no
greater than three hops to a destination. The AAA server gathers the relevant information and authorizes the request,
since it knows from its requests to the service equipment at each hop that traffic is light and there are ports and
bandwidth available for the connection. The AAA server, having authorized the request, can then distribute a policy
to the routers at each hop, ensuring the contractual QoS threshold. It can also set limits, via IP address restrictions,
on where requests made over the connection can go.

Policy Framework Points

Some more terminology is required to understand how systems interact to use policies. RFC policies are
retrieved using a policy retrieval point (PRP) from a policy repository. They are then evaluated at a
policy decision point (PDP) and enforced at a policy enforcement point (PEP), or the target. The
requests of other devices for information (like in the previous example) are made of policy information
points (PIPs) and are queried and retrieved using policy information blocks (PIBs).

In general, AAA servers can be PRPs and PDPs, and various pieces of service equipment serve as
PEPs. Policy repositories are present anywhere on the network, including various AAA servers or in
dedicated database servers. In network designs involving distributed services, multiple service providers
may have their own AAA equipment with their own policy repositories that can be queried using PIPs
and PIBs.

The RFC requires that the " . . . AAA protocol . . . be able to transport both policy definitions and the
information needed to evaluate policies. It must also support queries for policy information."

1.3.5 Resource and Session Management

The final components of the authorization framework (at least the final in terms of the scope of this book) are the
specifications for resource and session management. The problem with covering this is that, so far, the RFC waxes
theoretical much more than it offers concrete dimensions and mechanisms. But let's first look into what resource and
session management are and how they can benefit a protocol that is based on the AAA model.

Resource management is basically the ability to monitor resources that have been previously allocated. A program or
utility called the "resource manager" would be able to receive and display information on a resource in real time. Such
a program could, for example, monitor a pool of dial-up ports on a terminal server and report information to the
monitor program.

This is perhaps the simpler mechanism of the two to implement into a protocol, but there are inherent problems. With
fewer AAA servers, there isn't much traffic involved in real-time monitoring, and the equipment is more likely to be
confined to one entity's realm. Once the AAA server group expands and, particularly, begins to span multiple
domains, it becomes increasingly problematic to maintain the identity of specific servers. Uniqueness of sessions is
critical, and in addition, some method of combining session and resource information with a unique identifier is
needed. As has been well documented in a variety of applications, network synchronization has its own problems as
well, such as resource contentions and deadlocks.

Session management is the capability of a protocol or piece of equipment to notify an AAA server of a change in
conditions, and more ideally, to modify an existing session. That session could be changed, put on hold, or terminated
based on changing conditions recorded by the resource manager. Consider a connection based on a contract that
offers a specific QoS threshold (2 MB, for example) during working hours and another based on traffic load during
non-working hours. A session manager would use the information from the resource manager (which in this case
would monitor the session time and traffic load) and dynamically alter the parameters of the session when the traffic
load became heavier and the clock struck 5 P.M. It would then send a note back to the AAA servers at the UHO,
allowing them to record accounting information that could help with later billing requirements.

The combination of resource and session management allows complicated policies to be implemented and
provisioned with ease, even across a distributed policy platform. The agility to change based on varied conditions is
the focus of more research and development on the part of the AAA Working Group. They face numerous problems
in designing a model to incorporate these desires. For one, it's been difficult up to now to synchronize a session
database with the real state of a session. Connection delays and packet losses all come into contention when
real-time monitoring is used. Although there are commercial database products that claim to have solved this
"inter-domain database replication problem," there is yet to be an official specification of this inside an RFC.

The significance of monitoring data and traffic can easily be seen when you consider the oft-referenced ISP
wholesaler. He often makes agreements with providers to offer a certain number of ports for a certain length of time,
say 1,000 ports in any of 10 locations from 7 A.M. to 9 P.M., and 650 ports in any of these locations from 9:01
P.M. to 6:59 A.M. With possibly 1,000 requests coming in at the same time (the dreaded "overload" factor capacity
planners try to stifle) from 10 different locations, it would be crucial in the financial interests of both companies to
ensure that only 1,000 ports (or 650 ports) were used. If monitoring was not used, it would be impossible for the
wholesaler to determine that only 1,000 ports were used: that is to say, the ISP could exceed his allotment and the
wholesaler would not be aware of it. This is especially bad if the wholesaler's modem:user ratio were particularly low,
even 1:1, since any overage would result in a legitimate user from another organization being denied access.

As I mentioned earlier, the details and complications of resource and session management are far beyond what I
intend to cover in this book. However, you should be aware of how the authorization framework and session
management can be implemented and what the limitations are.

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

1.4 And Now, RADIUS

There's been much talk of AAA and so little of RADIUS. This is largely because RADIUS will not be eternally the
access control protocol of choice. In fact, RADIUS was created by a separate working group long before the AAA
design and fundamentals were brought to existence. The similarities are, however, remarkable.

AAA is the foundation of the next generation remote access protocol. Developments in creating the next protocol are
being made as I write this, so the days of RADIUS being the standard aren't infinite. But on the same token,
RADIUS has an established and well-respected presence in the industry, so it has a definite future.

1.4.1 A Brief History

RADIUS, like most innovative products, was built from a need. In this case, the need was to have a method of
authenticating, authorizing, and accounting for users needing access to heterogeneous computing resources. Merit
Networks, a big player in creating the Internet as we know it, operated a pool of dial-up resources across California.
At the time, authentication methods were peculiar to specific pieces of equipment, which added a lot of overhead and
didn't allow for much in the way of management flexibility and reporting. As the dial-up user group grew, the
corporation realized they needed a mechanism more flexible and extensible than remaining with their proprietary,
unwieldy equipment and scripts. Merit sent out a request for proposal, and Livingston Enterprises was one of the first
respondents. Representatives for Merit and Livingston contacted each other, and after meeting at a conference, a
very early version of RADIUS was written. More software was constructed to operate between the service
equipment Livingston manufactured and the RADIUS server at Merit, which was operating with Unix. The developer
of RADIUS, Steve Willins, still remains on the RFC document. From that point on, Livingston Enterprises became
Lucent, and Merit and Lucent took the RADIUS protocol through the steps to formalization and industry
acceptance. Both companies now offer a RADIUS server to the public at no charge.

1.4.2 Properties of RADIUS

The RFC specifications for the RADIUS protocol dictate that RADIUS:

•

Is a UDP-based connectionless protocol that doesn't use direct connections

•

Uses a hop-by-hop security model

•

Is stateless (more to come on that later)

•

Supports PAP and CHAP authentication via PPP

•

Uses MD5 for password-hiding algorithms

•

Provides over 50 attribute/value pairs with the ability to create vendor-specific pairs

•

Supports the authentication-authorization-accounting model

In addition, RADIUS enjoys support by virtually every commercially available NAS product, ensuring its future well
into the next 10 years.

1.4.3 Limitations of RADIUS

RADIUS, while having many positive attributes to its name, does have limitations. Doesn't everything, after all?

First, security is an obstacle in some implementations. Despite the irony, if an implementation in which there are
several proxy RADIUS servers is used, all hops must view, perform logic on, and pass on all data in the request,
hidden or not. This means that all data is available at every hop, which is not the most secure environment in which to
place such sensitive data as certificates and passwords.

Second, RADIUS, at least in its most general incarnation, has no support for recalling and deallocating resources
after an authorization has been issued. For instance, as mentioned earlier, it's possible to have a multi-hop proxy
RADIUS chain in which the first server grants the request and subsequently contacts the necessary equipment to
provision the services. If for some reason the service is not available (possibly because of a time-of-day restriction or
an account suspension that the frontline RADIUS server isn't aware of), there is no provision in the RFC specification
to deny and disconnect the service now that a rejection has been made. Some vendors have developed support for
subsequent rejections—including knocking a user off at his specific time limit rather than just denying him access the
next time he attempts to connect—but there's not a provision for this in the official specification.

Third, RADIUS is stateless (you heard about this earlier). That is to say, it does not keep track of configuration
settings, transaction information, or any other data for the next session. When a program "does not maintain state" (is
stateless) or when the infrastructure of a system prevents a program from maintaining state, it cannot take information
about the last session into the next, such as settings the user made or conditions that arose during processing. In terms
of using RADIUS, this complicates resource and session management solutions like I described previously.

And finally, users of RADIUS have noted that RADIUS has scalability problems. On the first page of the RFC is a
note from the IESG: "Experience has shown that [RADIUS] can suffer degraded performance and lost data when
used in large scale systems, in part because it does not include provisions for congestion control. Readers of this
document may find it beneficial to track the progress of the IETF's AAA Working Group, which may develop a
successor protocol that better addresses the scaling and congestion control issues."

If you were reading closely, you'd see that even the RADIUS RFC, itself, notes the fact that it's a limited protocol.
Unfortunately, adding the complications of just some of the limitations I presented here can cause problems on a
large-scale enterprise level. RADIUS is not always going to be the key authenticator protocol, but its basis on the
AAA framework (and your familiarity with its underpinnings, because of this book) makes the transition from
RADIUS to the next, more scalable protocol much easier.

So there's the overview of the key design aspects behind RADIUS. In the next chapter, I'll discuss RADIUS
specifically and go through the RFC, explaining each part in detail.

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

Chapter 2. RADIUS Specifics

In this chapter, I'll step through the most important sections of the RADIUS RFC and interpret them. Since the RFC
is approximately 80 pages long, it's not appropriate to provide every detail here. Some portions of the document are
antiquated, seldom used, or simply not important. While formality dictates their presence in the official document, this
chapter is meant more as a working reference guide.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

2.1 Using UDP versus TCP

A question frequently asked of the RADIUS development team is why the protocol uses the UDP protocol instead
of TCP. For purely operational requirements, UDP was selected largely because RADIUS has a few inherent
properties that are characteristic of UDP: RADIUS requires that failed queries to a primary authentication server be
redirected to a secondary server, and to do this, a copy of the original request must exist above the transport layer of
the OSI model. This, in effect, mandates the use of retransmission timers.

The protocol bets on the patience of users to wait for a response. It assumes some middle ground between lightning
fast and slow as molasses. The RADIUS RFC describes it best: "At one extreme, RADIUS does not require a
"responsive" detection of lost data. The user is willing to wait several seconds for the authentication to complete. The
generally aggressive TCP retransmission (based on average round trip time) is not required, nor is the
acknowledgment overhead of TCP. At the other extreme, the user is not willing to wait several minutes for
authentication. Therefore the reliable delivery of TCP data two minutes later is not useful. The faster use of an
alternate server allows the user to gain access before giving up."

Since RADIUS is stateless (as I mentioned in Chapter 1), UDP seems natural, as UDP is stateless, too. With TCP,
clients and servers must have special code or administrative workarounds to mitigate the effects of power losses,
reboots, heavy network traffic, and decommissioning of systems. UDP prevents this headache since it allows one
session to open and remain open throughout the entire transaction.

To allow for heavy systems use and traffic on the backend, which can sometimes delay queries and look-ups by as
much as 30 seconds or more, it was determined that RADIUS should be multithreaded. UDP allows RADIUS to
spawn to serve multiple requests at a time, and each session has full, uninhibited communication abilities between the
network gear and the client. Thus, UDP was a good fit.

The only downside to using UDP is that developers must create and manage retransmission timers themselves—this
capability is built into TCP. However, the RADIUS group felt that this one downside was far outweighed by the
convenience and simplicity of using UDP. And so it was.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

2.2 Packet Formats

The RADIUS protocol uses UDP packets to pass transmissions between the client and server. The protocol
communicates on port 1812, which is a change from the original RADIUS RFC document. The first revision
specified that RADIUS communications were to take place on port 1645, but later this was found to conflict with the
"Datametrics" service.

RADIUS uses a predictable packet structure to communicate, which is shown in Figure 2-1.

Figure 2-1. A depiction of the RADIUS data packet structure

The data structure is broken down into five distinct regions, which are discussed later in this chapter.

2.2.1 Code

The code region is one octet long and serves to distinguish the type of RADIUS message being sent in that packet.
Packets with invalid code fields are thrown away without notification. Valid codes are:
 1

Access-Request
 2

Access-Accept
 3

Access-Reject
 4

Accounting-Request
 5

Accounting-Response
 11

Access-Challenge
 12

Status-Server (under continued development)
 13

Status-Client (under continued development)
 255

Reserved

2.2.2 Identifier

The identifier region is one octet long and is used to perform threading, or the automated linking of initial requests and
subsequent replies. RADIUS servers can generally intercept duplicate messages by examining such factors as the
source IP address, the source UDP port, the time span between the suspect messages, and the identifier field.

2.2.3 Length

The length region is two octets long and is used to specify how long a RADIUS message is. The value in this field is
calculated by analyzing the code, identifier, length, authenticator, and attribute fields and finding their sum. The length
field is checked when a RADIUS server receives a packet to ensure data integrity. Valid length values range between
20 and 4096.

The RFC specification requires certain behaviors of RADIUS servers with regard to incorrect length data. If the
RADIUS server receives a transmission with a message longer than the length field, it ignores all data past the end
point designated in the length field. Conversely, if the server receives a shorter message than the length field reports,
the server will discard the message.

2.2.4 Authenticator

The authenticator region, often 16 octets long, is the field in which the integrity of the message's payload is inspected
and verified. In this field, the most important octet is transmitted before any other—the value used to authenticate
replies from the RADIUS server. This value is also used in the mechanism to conceal passwords.

There are two specific types of authenticator values: the request and response values. Request authenticators are
used with Authentication-Request and Accounting-Request packets. In the request value, the field is 16 octets long
and is generated on a completely random basis so as to thwart any attacks. While RADIUS doesn't make a
provision for protecting communication against wiretapping and packet capture, random values coupled with a strong
password make attacking and snooping difficult.

The response authenticator is used in Access-Accept, Access-Reject, and Access-Challenge packets. The value is
calculated using a one-way MD5 hash generated from the values of the code, identifier, length, and
request-authenticator regions of the packet header, followed by the packet payload and the shared secret. (I'll cover
shared secrets in detail later in this chapter.) Example 2-1 shows an equation to represent how this hash is computed.

Example 2-1. From RFC 2865, the MD5 hash for the response authenticator header field
 ResponseAuth = MD5(Code+ID+Length+RequestAuth+Attributes+Secret)

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

2.3 Packet Types

At this point, we have covered the structure of the packets RADIUS uses to transmit data. But what do these
packets do? There are four RADIUS packet types that are relevant to the authentication and authorization phases of
the AAA transaction:
 Access-Request Access-Accept Access-Reject Access-Challenge

While the accounting packet types are covered in detail in Chapter 4, the next section will step through these packets
and detail their intent, format, and structure.

Access-Request

Packet Type

Response

Code

1

Identifier

Unique per request

Length

Header length plus all additional attribute data

Authenticator

Request

Attribute Data

2 or more

The Access-Request packet is used by the service consumer when it is requesting a particular service from a
network. The client sends a Request packet to the RADIUS server with a list of the requested services. The key
factor in this transmission is the code field in the packet header: it must be set to 1, the unique value of the Request
packet. The RFC states that replies must be sent to all valid Request packets, whether the reply is an authorization or
a rejection.

The payload of the Access-Request packet should include the username attribute to identify the person attempting to
gain access to the network resource. The payload is required to contain the IP address or canonical name of the
network equipment from which it is requesting service. It also has to contain a user password, a CHAP-based
password, or a state identifier, but not both types of passwords. The user password must be hashed using MD5.

How do these rules apply to RADIUS proxy chains? Basically, new packets need to be created whenever attributes
are changed, since identifying information is changed. Attributes with shared secrets, which are covered in detail later
in this chapter, need to be reversed by the proxy server (to obtain the original payload information) and then
encrypted again with the secret that the proxy server shares with the remote server.

The Access-Request packet structure is shown in Figure 2-2.

Figure 2-2. A typical Access-Request packet

Access-Accept

Packet Type

Response

Code

2

Identifier

Identical to Access-Request per transaction

Length

Header length plus all additional attribute data

Authenticator

Response

Attribute Data

0 or more

The Access-Accept packets are sent by the RADIUS server to the client to acknowledge that the client's request is
granted. If all of the requests in the Access-Request payload are acceptable, then the RADIUS server must set the
response packet's code field to 2. The client, upon receiving the accept packet, matches it up with the response
packet by using the identifier field. Packets not following this standard are discarded.

Of course, to ensure that the request and accept packets are matched up—that is to say, to make sure the accept
response is sent in reply to the respective request packet—the identifier field in the Access-Accept packet header
must contain an identical value to that of the Access-Request field.

The Access-Accept packet can contain as much or as little attribute information as it needs to include. Most likely the
attribute information in this packet will describe the types of services that have been authenticated and authorized so
that the client can then set itself up to use those services. However, if no attribute information is included, the client
assumes that the services it requested are the ones granted.

The Access-Accept packet structure is shown in Figure 2-3.

Figure 2-3. A typical Access-Accept packet

Access-Reject

Packet Type

Response

Code

3

Identifier

Identical to Access-Request

Length

Header length plus all additional attribute data

Authenticator

Response

Attribute Data

0 or more

The RADIUS server is required to send an Access-Reject packet back to the client if it must deny any of the
services requested in the Access-Request packet. The denial can be based on system policies, insufficient privileges,
or any other criteria—this is largely a function of the individual implementation. The Access-Reject can be sent at any
time during a session, which makes them ideal for enforcing connection time limits. However, not all equipment
supports receiving the Access-Reject during a pre-established connection.

The payload for this packet type is limited to two specific attributes: the Reply-Message and Proxy-State attributes.
While these attributes can appear more than once inside the payload of the packet, apart from any vendor-specific
attributes, no other attributes are allowed, under the RFC specification, to be included in the packet.
(Vendor-specific attributes are covered in detail both later in this chapter and throughout the remainder of the book.)

The Access-Reject packet structure is shown in Figure 2-4.

Figure 2-4. A typical Access-Reject packet

Access-Challenge

Packet Type

Response

Code

11

Identifier

Identical to Access-Request

Length

Header length plus all additional attribute data

Authenticator

Response

Attribute Data

0 or more

If a server receives conflicting information from a user, requires more information, or simply wishes to decrease the
risk of a fraudulent authentication, it can issue an Access-Challenge packet to the client. The client, upon receipt of
the Access-Challenge packet, must then issue a new Access-Request with the appropriate information included.

It should be noted that some clients don't support the challenge/response process like this; in that case, the client
treats the Access-Challenge packet as an Access-Reject packet. Some clients, however, do support challenging, and
at that point a message can be given to the user at the client requesting the additional authentication information—it's
not necessary in that situation to set off another round of request/response packets.

Much like the Access-Reject packet, there are only two standard attributes that can be included in an
Access-Challenge packet: the State and Reply-Message attributes. Any necessary vendor-specific attributes can be
included as well. The Reply-Message attribute can be included in the packet multiple times, but the State attribute is
limited to a single instance. The State attribute is copied unchanged into the Access-Request that is returned to the
challenging server.

The Access-Challenge packet structure is shown in Figure 2-5.

Figure 2-5. A typical Access-Challenge packet

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

2.4 Shared Secrets

To strengthen security and increase transactional integrity, the RADIUS protocol uses the concept of shared secrets.
Shared secrets are values generated at random that are known to both the client and the server (hence the "shared").
The shared secret is used within all operations that require hiding data and concealing values. The only technical
limitation is that shared secrets must be greater than 0 in length, but the RFC recommends that the secret be at least
16 octets. A secret of that length is virtually impossible to crack with brute force. The same set of best practices that
dictate password usage also govern the proper use of RADIUS shared secrets.

Shared secrets (commonly called just "secrets") are unique to a particular RADIUS client and server pair. For
instance, if an end user subscribes to multiple Internet service providers for his dial-up access, he indirectly makes
requests to multiple RADIUS servers. The shared secrets between the client NAS equipment in ISPs A, B, and C
that are used to communicate with the respective RADIUS servers should not match.

While some larger scale RADIUS implementations may believe that protecting transactional security by using an
automated shared-secret changer is a prudent move, there is a rather large pitfall: there is no guarantee the clients and
servers can synchronize to the new shared secret at the most appropriate time. And even if it was certain that the
simultaneous synchronization could occur, if there are outstanding requests to the RADIUS server and the client is
busy processing (and, therefore, it misses the cue to synchronize the new secret), then those outstanding requests will
be rejected by the server. The situation would be tantamount to having your checking account numbers stolen: when
the bank gives you new account numbers, outstanding checks written on your old account will bounce since that
account was closed.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

2.5 Attributes and Values

Although at this point the attribute field in a RADIUS packet may seem like nothing more than a glorified way to
determine header information, there's a lot more going on than meets the eye. Specifically, the entire RADIUS
transaction is built around passing to and from the client and server attribute-value pairs (AVPs) that contain virtually
every property and characteristic of the AAA transaction.

To enhance security, the RADIUS RFC restricts some attributes from being sent in certain packets—or to be more
specific, the timing of certain packets. For instance, to prevent the password from ever crossing the wire more than
once for one authentication/authorization process, the User-Password attribute is never allowed to be sent in a reply
packet from the server to the client. Even more stringently, the RFC prevents some attributes from even being
present in certain transactions, while others can appear more than once, and still others only once. More information
on restrictions like these is presented in the sections that follow.

Attributes in a packet all follow a specific field format. From this point on, I'll refer to this field format as:
 Attribute Number

This number denotes the type of attribute presented in the packet. The attribute's name is not passed in the
packet—just the number. Generally, attribute numbers can range from 1-255, with one specific number serving as a
"gateway" of sorts for vendors to provide their own specific attributes.
 Attribute Length

This field describes the length of the attribute field, which must be three or greater. It behaves in much the same way
as the length field of the RADIUS packet header.
 Value

Containing the property or characteristic of the attribute itself, this field is required for each attribute presented, even
if the value itself is null. The length of this will vary based on the inherent nature of the attribute itself.

The concepts of attributes and values themselves are worthy of a bit more discussion.

2.5.1 Attributes

Attributes simply describe a behavior or a property of a type of service. While most attributes are included to denote
a particular setting for a service type, the presence of some attributes in the packet tells the RADIUS server what it
needs to know. As you'll see later in this chapter, the very inclusion of the CHAP-Password attribute in a packet
signals to the RADIUS server the proper hashings and password-concealing processes to perform for that particular
transaction. This is a unique property of attributes—they can stand alone, while values simply cannot.

Attributes are transmitted inside the RADIUS packet in a predetermined, standard format, as shown in Figure 2-6.

Figure 2-6. The standard AVP transmission pattern

The AVP structure shown in Figure 2-6 consists of a continuous set of bytes containing at least three octets, with the
first octet being the type, the second the length, and the final octet the value of the attribute itself.

The RADIUS server knows enough about an attribute that its official name need not be transmitted in the packet.
The code number (the attribute number) is enough to deduce the kind of information being transmitted in that
particular value. Note that while there is an official guide to all of the attribute names in the RFC, these aren't
required, and some vendors may modify the diction of the names in their specific implementations.

2.5.1.1 Attribute types

The RADIUS implementation, according to the RFC, is designed to look for certain types of values in the value field
of a particular attribute. For example, you wouldn't want random numbers in an attribute designed to pass a date, nor
would you expect to have an IP address (consisting of numbers) in a random character string. To ease the confusion
surrounding multiple attribute values being passed in one transaction, each attribute's corresponding value has been
assigned a certain type. This simply describes what the value is—a number, an IP address, a date, and so on. There
are six types as outlined in the RFC:
 Integer (INT)

Integer types are values that contain whole numbers, which are read "as they come." An attribute like Idle-Timeout
might be set to the integer value of 15.
 Enumerated (ENUM)

Data that is of the enumerated type consists of an integer, but the value is based on a user-configurable set of range
values and meanings. You may encounter enumerated values called semantic integer values, whereas non-semantic
integer values are simply integer types. There will be more information later in this chapter about ENUM values.
 IP Address (IPADDR)

This data type is a 32-bit number designed to pass a correctly formed IP address. While RADIUS by default looks
at an IP address at face value, some implementations can be configured to handle it with a preconfigured value, such
as a particular subnet mask. Also, a recent extension to the RADIUS protocol allows IPv6 addresses to be used in
this type. Much of the handling of this data type is left up to the implementation and operating environment.
 Character String (STRING)

Character strings are generally defined to be UTF-8 printable strings that can be read at face value. The data is
passed as a character array that can be bounded or unbounded, whichever is appropriate. The RADIUS RFC has
specific notes regarding handling character arrays (particularly with printing issues) that are beyond the scope of this
discussion.
 Date (DATE)

The date type is a 32-bit unsigned number representing elapsed seconds since January 1, 1970.
 Binary (BINARY)

Often peculiar to an implementation, binary values ("0" or "1") are read at face value.

The all-caps notations contained in the parentheses beside each term heading indicate the proper notational
abbreviation for each of the attribute types.

2.5.1.2 Vendor-specific attributes

As with most of the RADIUS protocol, there is much flexibility for vendor-specific attribute types to come about in
different implementations. Much of this is created to directly support special, non-standard or value-added features
that some particular RADIUS client equipment is capable of provisioning. Of course, presumably because there in
fact is a standard, some vendors—notably US Robotics/3Com—do not follow the RFC specification.

As mentioned earlier in this chapter, the RADIUS protocol defines a particular AVP as a "gateway" AVP in which
vendor-specific attributes, or VSAs, can be encapsulated. The VSA is carried in value payload of the standard AVP
26, called Vendor-Specific. Figure 2-7 shows the standard AVP and how the VSA information is carried within.

Figure 2-7. The passing of a VSA within a standard AVP

In Figure 2-7, the four standard parts of any VSA can be distinguished: the vendor ID, the vendor type, the length,
and the value.
 Vendor ID

This section of the VSA contains four octets that represent the VSA's developer/designer/owner. These standard
codes are defined in the RFC 1700 document as "Assigned Numbers." More specifically, the individual vendors are
coded with unique numbers called Network Management Private Enterprise Codes, or NMPECs.

The order of the vendor ID field contents is based on a stringent standard, with the highest-order byte of the
four-octet value being set to zero, and then the last three bytes set to the NMPEC code as described previously. The
whole lot is then converted into the portable byte format known as "network byte ordering." (A discussion of
network byte ordering is beyond the scope of this chapter. A web search engine can turn up detailed information and
history on this if you wish.)
 Vendor type

The vendor type field, which is one octet in length, functionally behaves in much the same way as the attribute number
in a standard AVP. Vendor types are values with a range between 1 and 255, and the significance and meaning of
each of the values is known to the vendor-specific logic inside the RADIUS server.
 Length

This field is a one-octet number that indicates the length of the entire VSA, with the minimum length of the entire VSA
being seven. Again, the behavior of this field is similar to the length field in a standard, RFC-defined AVP.
 Value

The value field is required to be at least one octet in length and contains data that is specific to the VSA itself. Most
of these values are read, interpreted, and analyzed by RADIUS clients and servers on the receiving end that are
aware of the special features and non-standard abilities that their particular implementations support.

2.5.2 Values

Recall that all attributes must have values, even if the value of the attribute is null. Values represent the information
that each particular attribute was designed to convey. They carry the "meat" of the information. Values must conform
to the attribute type rules outlined previously. Table 2-1 shows examples of each attribute type and the expected
value field payload for each.

Table 2-1. Attribute types and value field payloads

Attribute type

Length (in octets)

Size/Range

Example payloads

Integer (INT)

4

32-bit unsigned

6
256
2432

65536

Enumerated (ENUM)

4

32-bit unsigned

3 = Callback-Login
4 = Callback-Framed
13 =
Framed-Compression

26 = Vendor-Specific

String (STRING)

1-253

Variable

"Charlotte"
"Raleigh"
"206.229.254.2"

"aslyterdesign.com"

IP Address (IPADDR)

4

32-bit

0xFFFFFE
0xC0A80102
0x1954FF8E

0x00000A

Date (DATE)

4

32-bit unsigned

0xC0A80102
0xFFFFFE
0x00000A

0x1954FF8E

Binary (BINARY)

1

1 bit

1

Each of these value properties is enumerated (pun intended) and explained in the RADIUS RFC.

2.5.3 Dictionaries

The RADIUS server machines must have a way of relating which attribute corresponds to which attribute number
and expected type. It also must be aware of any vendor-specific attributes it must support to contact the RADIUS
client equipment that is operating in the same environment. Much like a dictionary of the English language contains
words, their word types (verb, noun, preposition, etc.), and their definitions, a RADIUS dictionary keeps track of the
properties of all standard and the appropriate vendor-specific attributes.

The commonly found RADIUS flexibility is extended to the dictionary implementation. Dictionaries can be stored in
flat text files, in databases, or by just about any other means—the only constraint here is the accessibility of the
information to the RADIUS server. While more exotic means of storing the file are not out of the question,
experience shows that by far the two most common methods of storing the dictionary information are in text files and
databases.

Here is an excerpt of a common flat text file dictionary:
 # ATTRIBUTE-NAME TYPE
#--------------------------------------
1 User-Name STRING
2 User-Password STRING
3 CHAP-Password STRING
4 NAS-IP-Address IPADDR
5 NAS-Port INT
6 Service-Type ENUM
7 Framed-Protocol ENUM
8 Framed-IP-Address IPADDR
9 Framed-IP-Netmask IPADDR

10 Framed-Routing ENUM

Earlier in this chapter, I said that RADIUS implementations have enough information so
that the text name of each attribute doesn't need to be transmitted. Most dictionary files do
include this information for the sake of the administrator—it's difficult to edit a file based
solely on numbers, and in the name of convenience, the full name is included. The full name
is not transmitted in a packet.

Recall from the discussion of attribute types earlier that a special type of integer value, the enumerated (ENUM) type,
is simply a set of integers whose values are of different significance based on the specific attribute. For instance, in the
previous example, the Framed-Protocol attribute is of the enumerated type; thus, the RADIUS server will need to
know the meanings of the different values the Framed-Protocol attribute will pass. Consider this next example, which
shows the way a RADIUS server would account for the different meanings of the enumerated values for the
Framed-Protocol attribute:
 # VALUE-MEANING FOR ATTRIBUTE
#---
1 PPP 7
2 SLIP 7
3 AppleTalk Rem. Acc. Protocol (ARAP) 7
4 Gandalf SingleLink/MultiLink 7
5 Xylogics proprietary IPX/SLIP 7

6 X.75 Synchronous 7

Each RADIUS implementation may store information about any vendor-specific attributes in a dictionary as well. The
format of a flat text file dictionary complete with vendor-specific attributes would look similar, except the vendor ID
code (based from the NMPEC code) must be included as well.

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

2.6 Authentication Methods

RADIUS supports a variety of different protocol mechanisms to transmit sensitive user-specific data to and from the
authentication server. The two most common are the Password Authentication Protocol (PAP) and the CHAP.
RADIUS also allows for more attributes and methods developed by vendors, including support for features peculiar
to Windows NT, Windows 2000, and other popular network operating systems and directory services. The
following section explores the two most common methods in greater detail.

2.6.1 PAP

The User-Password attribute in a requesting packet signals to the RADIUS server that the PAP protocol will be
used for that transaction. It's important to note that the only mandatory field in this case is the User-Password field.
The User-Name field does not have to be included in the requesting packet, and it's entirely possible that a RADIUS
server along a proxy chain will change the value in the User-Name field.

The algorithm used to hide the original user's password is composed of many elements. First, the client detects the
identifier and the shared secret for the original request and submits it to an MD5 hashing sequence. The client's
original password is put through the XOR process and the result coming from these two sequences is then put in the
User-Password field. The receiving RADIUS server then reverses these procedures to determine whether to
authorize the connection. The very nature of the password-hiding mechanism prevents a user from determining if,
when the authentication fails, the failure was caused by an incorrect password or an invalid secret. Most commercial
RADIUS servers, though, include logic that looks at the series of packets previously transmitted from the same client.
If a number passes through the connection correctly, most likely the few packets that failed did so because of an
incorrect password.

2.6.2 CHAP

CHAP is based on the premise that the password should never be sent in any packet across a network. CHAP
dynamically encrypts the requesting user's ID and password. The user's machine then goes through its logon
procedure, having obtained a key from the RADIUS client equipment of at least 16 octets in length. The client then
hashes that key and sends back a CHAP ID, a CHAP response, and the username to the RADIUS client. The
RADIUS client, having received all of the above, places the CHAP ID field into the appropriate places in the
CHAP-Password attribute and then sends a response. The challenge value originally obtained is placed in either the
CHAP-Challenge attribute or in the authenticator field in the header—this is so the server can easily access the value
in order to authenticate the user.

To authenticate the user, the RADIUS server uses the CHAP-Challenge value, the CHAP ID, and the password on
record for that particular user and submits it to another MD5 hashing algorithm. The result of this algorithm should be
identical to the value found in the CHAP-Password attribute. If it's not, the server must deny the request; otherwise,
the request is granted.

The fact that the password in a CHAP transaction is never passed across the network is just one reason why CHAP
is an appealing authentication protocol. How does this work? The user data against which the hashing routine is run
returns a one-way value that does not contain the password. So the server must have the current user's password
stored in clear text in its own records in order to create a hash with which to compare. CHAP IDs are also
non-persistent, which reduces the possibility of a third party sniffing or otherwise intruding on the transaction.
Additionally, the CHAP protocol supports challenging the client anytime during the user's session, which increases the
likelihood that invalid users are kept out of the system.

Using Strong, Secure Passwords

The security of CHAP and the integrity of transactions initiated using CHAP depends heavily on the
strength of the user's password. In PAP authentication, the shared secret is used in conjunction with the
MD5 hash to conceal the password. The actual password is used in much the same way with CHAP
authentication. Despite the fact that the password itself is never transmitted, a weak, easily guessable
password is fodder for crackers. This is because the values submitted to the MD5 hashing algorithm can
be easily replicated or "backtracked."

Good passwords use words or phrases that can't be easily guessed, that aren't found in a dictionary, and
that are of a length to make brute-force cracking impractical or impossible. To use passwords that don't
meet these criteria is to place in jeopardy the security and integrity of the entire CHAP authentication
mechanism itself.

2.6.3 Selecting PAP, CHAP, or Other Protocols

There is a school of thought on either side of using CHAP or PAP in a network that requires authorization. Some
systems administrators think that because CHAP's security cannot be enforced when authorization requests must
travel outside their realm of control, PAP is a more appropriate method. This is because with PAP, the strength of
the shared secret used in the transmissions between the machines is under the direct control of the original
administrator. As well, any particular administrator cannot be guaranteed that one authentication protocol will be used
throughout any environment in which requests are passed through a proxy chain. In this case, the final authorizing
sequence decides the authentication protocol.

RADIUS isn't limited at all to PAP or CHAP authentication. The limits on authenticator protocols are inherent to the
operating system. For instance, RADIUS can support a domain attribute when logging into a Windows NT or
Windows 2000 system. The key factor in supporting RADIUS authentication is that the password be available
somehow to the host system. The most common way to do this is to use a Unix password file, but that particular file
only works with PAP authentication. Passwords can also be retrieved from a directory service (such as Microsoft's
Active Directory, Novell's eDirectory, or a generic LDAP directory store), from an encrypted file, or by some other
means. All of this is to say that support for various authenticator protocols depends entirely on the configuration of a
particular RADIUS environment.

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

2.7 Realms

While RADIUS can be as ignorant of externalities as an administrator wants, it can also be made aware of various
implementations. RADIUS is flexible with regard to various design schemes to allow it to support different business
and infrastructure models. Take, for instance, a cooperative agreement among three regional Internet service
providers. Let's explore this example in greater detail.

Northwest Internet serves the northern and western portions of a state. Southeast Internet serves the southern and
eastern regions, and Central State Internet provides support to the central area of a state. While each of these ISPs
may have modem-pool resources in overlapping geographical areas, most of the access resources are confined to
particular regions.

Now, each of the service providers determine that there is sufficient demand to offer a roaming service to customers
to allow them to dial a local number anywhere in the state to access the Internet. While the service would be more
expensive than normal, with a home-area dial-up service, a local number allows the customer to avoid expensive
long-distance charges most hotels and other lodging establishments levy. Each ISP determines that it's not fiscally
efficient for them to construct points of presence in each region, so they form a cooperative alliance in which each
ISP allows the other two ISPs to have access to their respective modem pools. So Northwest Internet can offer a
roaming service to its mobile users who happen to dial up in the southern and eastern portions of the state, and so on.

The key question here revolves around how each ISP can offer access and ensure that only valid users can connect
to their resources, while protecting the sanctity and security of the respective providers' sensitive customer
information. To fill this need, RADIUS comes with support for identifying users based on discrete design-based
areas, or realms. Realms are identifiers that are placed before or after the values normally contained in the
User-Name attribute that a RADIUS server can use to identify which server to contact to start the AAA process.

The first type of realm identifier is known as the prefix realm, in which the realm name is placed before the username,
and the two are separated by a preconfigured character, most commonly @, \, or /. For instance, a user named
jhassell who subscribes to Central State Internet's service (whose realm name is CSI) would configure his client to
pass a username like CSI\jhassell.

The other realm identifier syntax is the suffix realm, where the username is placed before the realm name. The
common separators are still used in this syntax as well, though by far the most common is the @ sign. For example,
the user awatson subscribing to Northwest Internet's service (realm name: NWI) using realm suffix identification
would pass a username like awatson@NWI.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

2.8 RADIUS Hints

An administrator can configure a RADIUS server to grant some services by default to any authenticated user, while
other configurations might permit only the services requested in the client's request packet to be authorized. RADIUS
can be set up to handle service authorizations in countless different ways. The RADIUS RFC thus specifies
information that can be included in a RADIUS packet header sent from a client to a server that "hints" to the server
which explicit services it wants. These bits of information are called RADIUS hints.

RADIUS hints behave differently based on the way an administrator sets up his RADIUS client gear to authorize
transactions. The RFC states that the receiving RADIUS server can choose whether to grant the hints requests if
doing so would not violate the local security setup. If the RADIUS server chooses not to grant the hints request,
though, it is also allowed under the RFC specification to authorize a service that can be granted based on the user's
access policy. If it can't do this, then it must terminate and disconnect the session.

Hints are designed primarily for environments in which the RADIUS server has partial control of the resources
needed to provision service for the client. For instance, the client may request a specific, static IP as paid for in her
monthly billing by sending a hint in the request. The NAS gear, having obtained explicit authorization from the
RADIUS server (eliminating the extra transaction hop to obtain authorization from the IP leasing pool machine), may
then grant the request by telling the RADIUS server to send the details in an Access-Accept packet, alter the routing
tables, and do whatever else needs done to provision the service.

It's important to note that RADIUS hints never have any effect on the base RADIUS protocol. They're simply small
notes "under the table" to the RADIUS server from the client, requesting that the service have optional, temporary, or
extra characteristics or abilities .

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

Chapter 3. Standard RADIUS Attributes

In this chapter, I'll look at the global set of standard RADIUS attributes as per the RADIUS RFC. There are 63
attributes defined in the RFC that provide support and configuration options for everything from connection type,
virtual terminals, and connect/session time limits to packet filtering and caller-return services. This chapter presents
these attributes in alphabetical order.

One note: this chapter covers only the attributes based on the authentication and authorization processes of a
RADIUS transaction, which are attributes 1-39 and 60-63. Attributes 40-59 are covered in Chapter 4.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

3.1 Attribute Properties

Each attribute in this chapter is presented as a separate "nugget" of information. Each nugget contains a
quick-reference chart for the particulars of the attribute, followed by a discussion of the attribute, where I discuss any
special considerations in the usage or configuration of the attribute, how its use affects or requires other attributes,
practical applications of the attribute, and how it sometimes differs from the theoretical implication from the RFC.

Appendix A contains a chart with all of the global standard RADIUS attributes (including
those specific to accounting) and their numbers, lengths, values, and packet presence
requirements.

Chapter 9 presents the attributes introduced and revised in the new RADIUS Extensions
RFCs. I have separated these attributes to maintain the distinction exhibited in the RFCs.

Callback-ID

Attribute Number

20

Length

3 or more octets

Value

STRING

Allowed in

Access-Accept

Prohibited in

Access-Request, Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

This attribute is used when a RADIUS implementation is set up to return a user's call. This is commonly used in
corporate situations to avoid long-distance charges in hotel rooms and other remote locations. This value, a
STRING, is often the identifier for a profile configured on the service equipment; there is no specific standard for a
string name, a triggered action, or something else. In other words, it is environment-specific. RADIUS client gear is
allowed to reject a connection if this attribute is present but not supported by that gear.

Callback-Number

Attribute Number

19

Length

3 or more octets

Value

STRING

Allowed in

Access-Request, Access-Accept

Prohibited in

Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

The value of this attribute is the number to which the RADIUS client gear should return a call to the authenticating
user. Depending on what packet this attribute is found in, different actions may be configured. For instance, if
Callback-Number is found in an Access-Request packet, the implementation may assume that the end user is
requesting callback service. If the attribute is found in the Access-Accept packet, it can mean anything that the
administrator configuring the gear wants it to mean. In fact, in some cases, Callback-ID and Callback-Number will
not be found together in one packet.

Coupled with the Callback-ID attribute, this attribute is one of several RADIUS security measures. In addition to
being more convenient and cost-effective for companies with employees in hotels needing access to corporate IT
resources, the callback mechanism is also a security device. The implementation could be configured to call a certain
number when a certain username requests access. This way, if a hacker is located somewhere other than where the
genuine user normally connects from, the hacker would not be able to authenticate.

Called-Station-ID

Attribute Number

30

Length

3 or more octets

Value

STRING

Allowed in

Access-Request

Prohibited in

Access-Accept, Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

The value in this packet can tell the NAS gear what number the user dialed to gain access to its service. Using the
Dialed Number Identification Service (DNIS), the NAS gear may use this data to authenticate based on location (if
each point of presence in various locations has a different number). Also, the Called-Station-ID can be used to
identify which RADIUS proxy server forwarded the request. Using this attribute in that manner is called
"numbered-realm proxying."

Outside of standard dial-up Internet access, the Called-Station-ID attribute can be used in other applications. For
example, in the publicly available wireless access industry, typically you will find the MAC address of the access
point to which the wireless card is connected in this field, with the octets separated by hyphens. While this is certainly
not a prescribed standard by any RFC, this is a best practice.

Calling-Station-ID

Attribute Number

31

Length

3 or more octets

Value

STRING

Allowed in

Access-Request

Prohibited in

Access-Accept, Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

This attribute, in effect, is the NAS gear's Caller ID function. The value in this attribute carries the number of the
calling party inside an Access-Request packet. This can be used both for convenience and security purposes. For
instance, different access-control lists can be created, only allowing callers from certain places to be authenticated.
As well, a regional POP could be managed and limited by only allowing callers from certain area codes and
exchanges. This attribute could also be used in conjunction with a callback service. Much of the configuration of what
the NAS gear does with the Calling-Station-ID attribute is environment specific; there is no standard manner to
handle the attribute.

CHAP-Challenge

Attribute Number

60

Length

7 or more octets

Value

STRING

Allowed in

Access-Request

Prohibited in

Access-Accept, Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

If a CHAP transaction is involved—in other words, if CHAP responses are requested from or required by the
RADIUS client—then the original CHAP challenge is placed in the value field of this attribute. The CHAP request is
then sent to another server, which attempts to authenticate the request based on the CHAP-Challenge value.
Normally, these values are around 16 bytes, which allows the RADIUS client the option of using the value in this
attribute as the request authenticator. The large allowable size of the value makes the attribute secure enough to allow
this.

CHAP-Password

Attribute Number

3

Length

19

Value

STRING

Allowed in

Access-Request

Prohibited in

Access-Accept, Access-Reject, Access-Challenge

Presence in Packet

Required, unless User-Password is present

Maximum Iterations

1

CHAP-Password indicates to the RADIUS client gear that CHAP, instead of PAP, is going to be used for the
transaction.

Of particular interest regarding CHAP-Password is the structure of the attribute, which is different than most of the
other attributes. The CHAP-Password attribute is structured much like the vendor-specific AVP passed within the
standard Vendor-Specific attribute, number 26. This abnormal structure is due to the additional data collected in a
CHAP transaction that needs to be passed between the two parties. Let's take a closer look.

The CHAP identifier, a one-octet value that the RADIUS client gear assigned, is placed in the first octet of the
attribute's value field. The response, effectively the CHAP password, completes the rest of the value field.

The RADIUS RFC requires that the User-Password and the CHAP-Password attributes be mutually exclusive, but
one or the other is required in any transaction at all times.

How does the CHAP-Password attribute affect the RADIUS transaction? The sequence is this: a dial-up client
connects to an ISP's NAS gear, which in turn issues a CHAP ID and sends it back to the client. The client generates
a response to this challenge and places the response in the password section of the value field. The entire lot is then
returned to the NAS gear. The NAS gear is relatively flexible in dealing with the challenge: if the challenge generated
at the client side is 16 octets, it can be placed in the request authenticator or in the challenge section of the value field.

In either case, once the NAS gear receives the CHAP ID and CHAP password back from the client, it uses a hash
computed from information in the Access-Request packet combined with the user's recorded password to construct
a CHAP-Response, which is then compared with the information provided in this attribute. Matches result in a
successful authentication; mismatches trigger an Access-Reject packet.

Class

Attribute Number

25

Length

3 or more octets

Value

STRING

Allowed in

Access-Accept

Prohibited in

Access-Request, Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

Unlimited

The Class attribute mainly exists to funnel identification and property information to the accounting systems of
RADIUS implementations. The RFC mandates that the Class attribute is completely and totally vendor and
implementation specific, and also dictates that the RADIUS client not even attempt to act on or interpret the
information stored within that attribute.

While the value of this attribute is a string, the RFC dictates that the gear treat the value of that string is a contiguous
set of data, or a set of "undistinguished octets." That is to say, the RADIUS client must not expect any boundaries or
spaces in the data.

Effectively, this attribute mainly groups and "classifies" connection information. Accounting data is often used to
predict demand, determine load, and plan for the future. Although categorized information may be of no use at the
present, when the only concern is authenticating, it may prove useful down the road to accounting users.

Filter-ID

Attribute Number

11

Length

3 or more octets

Value

STRING

Allowed in

Access-Accept

Prohibited in

Access-Request, Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

Unlimited

Filter-ID is arguably one of the most pragmatic, useful attributes in the RADIUS specification. Filter-ID is based
upon the common practice of packet filtering, the use of which is most often found in firewalls and intrusion detection
systems. The premise behind packet filtering is to inspect each and every packet in a transaction or data stream in
order to determine, based on rules that an administrator configures, whether those packets should be allowed to pass
through.

In RADIUS, however, that use is not as distinct. The most parallel example of packet inspection as a security device
is when you view the RADIUS client gear as a gateway. Indeed, the RADIUS client is the first hop on the packet's
destination to the Internet, and the client can filter based on rules to conclude whether to allow the packet to pass.
But in RADIUS, packet filtering examines rules that an administrator configures, known as "filter profiles," which act
as guides to what packets can do what actions on what network. Let's take a closer look.

Let's assume that a certain RADIUS implementation has three filter profiles configured: a "Mailonly" profile, a
"FullInet" profile, and a "LocalSurf" profile. These profiles correspond to several account types that a local ISP
offers: one for families who simply want email service without the ability to surf the Web, one for those who wish to
have a full complement of Internet services, and another for those who enjoy accessing the ISP's local resources: a
news server, an about-town page, and perhaps technical support sites.

The profiles feature of RADIUS allows each RADIUS client to store profile information that defines and enforces
restrictions on a session. So it is feasible for the ISP to create the Mailonly profile that allows a connection bound to
that profile to surf only to the IP of the mail server, only on ports 25 and 110. Similarly, the LocalSurf profile would
allow connections only to the IP subnet leased to the ISP.

It's important to note that all RADIUS gear, whether acting as a client or a server, must be configured correctly and
consistently for filter profiles to work. Depending on the RADIUS client equipment, if a non-existent or incorrectly
configured filter is referenced, the NAS could drop the call, allow no traffic, or allow all traffic. This is obviously not
what you, the administrator, desire, as otherwise you wouldn't be configuring a filter!

The RADIUS client looks in the Access-Accept packet to determine whether a filter profile should be applied to the
connection.

Framed-AppleTalk-Link

Attribute Number

37

Length

6

Value

INTEGER

Allowed in

Access-Accept

Prohibited in

Access-Request, Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

RADIUS supports a session in which the client computer acts as an AppleTalk router. The Framed-AppleTalk-Link
attribute identifies that circumstance to the RADIUS client gear on the far side of the connection. If the value of this
attribute is greater than zero, then the value is treated as an AppleTalk network number.

The RFC mandates that this attribute not be used when the client is not acting as an AppleTalk router. This attribute
is also exclusive of the Framed-AppleTalk-Network attribute: if both are present in the Access-Accept packet, the
connection will be unreliable, and the RADIUS client gear is free to disconnect and/or reject the call.

Framed-AppleTalk-Network

Attribute Number

38

Length

6

Value

INTEGER

Allowed in

Access-Accept

Prohibited in

Access-Request, Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

Unlimited

If the dial-up user needs AppleTalk access and is not including the Framed-AppleTalk-Link attribute (thus indicating
his desire to act as an AppleTalk router), then the RADIUS client gear will retrieve an AppleTalk network number
for the connection from the network that is reflected in the Framed-AppleTalk-Network attribute. If the attribute has
a zero value, it is an indication that the client wishes to be assigned an AppleTalk network number by the RADIUS
client gear.

The RADIUS RFC permits multiple instances of the Framed-AppleTalk-Network attribute to be included in one
Access-Accept packet to allow for redundancy and fail-over should the desired network be unavailable or unwilling
to grant access.

Framed-AppleTalk-Zone

Attribute Number

39

Length

3 or more octets

Value

STRING

Allowed in

Access-Accept

Prohibited in

Access-Request, Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

This attribute indicates the appropriate AppleTalk zone for the connection. Much like the Class attribute, the value in
this attribute is a STRING and is therefore read by the RADIUS client as a string of "undistinguished octets."

Framed-Compression

Attribute Number

13

Length

6

Value

ENUM

Allowed in

Access-Request, Access-Accept

Prohibited in

Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

Unlimited

This attribute states the intent for and type of compression to be used over the connection. The value is of the
enumerated type and can range from 0 to 3. Table 3-1 lists the corresponding values and compression types allowed
for this attribute.

Table 3-1. Appropriate framed-compression values

Value

Associated compression type

0

None

1

Van-Jacobsen-Header-Compression

2

IPX-Header-Compression

3

Stac-LZS-Compression

For IP-based connections, the Van-Jacobsen compression algorithm is used. For all other connection protocols, the
value listed in this attribute determines the compression to be used.

The RADIUS RFC permits multiple instances of the Framed-Compression attribute in the Access-Request and
Access-Accept packets; if this is the case, then it is the client gear's responsibility to determine the compression
method best suited for that particular connection. It is important to note that if the compression-type value received in
a packet is not supported by the RADIUS client gear, it is not under any obligation per the RFCs to honor that
request.

Framed-IP-Address

Attribute Number

8

Length

6

Value

IPADDR

Allowed in

Access-Request, Access-Accept

Prohibited in

Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

In link-framed connections using such protocols as SLIP and PPP, the Framed-IP-Address attribute carries, quite
obviously, the value of the IP address to be assigned to the connection. Depending on the origin of the
Access-Request packet, the attribute has the following different meanings:
 From the RADIUS client

The value of this attribute indicates the client's preference in IP address. The RADIUS server does not have to assign
this address, although it may do so.
 From the server to the client

The RADIUS server will assign the IP found in this attribute to the connection.

There are exceptions to that rule, however. There are two specific IP values reserved for use by RADIUS. The
address 255.255.255.255 is used when the client computer negotiates for the IP it uses—this may be when the user
has an assigned static IP address and needs to communicate directly with the IP provisioning equipment in order to
get this address. The address 255.255.255.254 is used when the RADIUS client issues the IP address.

Framed-IP-Netmask

Attribute Number

9

Length

6

Value

IPADDR

Allowed in

Access-Request, Access-Accept

Prohibited in

Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

This attribute is used when the connection needs a specific netmask number. Even though a client-based DHCP
server often assigns netmasks to connections, in certain cases when groups of IP addresses aggregated by CIDR are
distributed by the RADIUS server, specific netmasks may be necessary.

While this attribute can appear within an Access-Request packet, the server is not required to honor it, although it
may do so.

Framed-IPX-Network

Attribute Number

23

Length

6

Value

INTEGER

Allowed in

Access-Accept

Prohibited in

Access-Request, Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

This attribute assigns IPX network numbers. If there is a value in each octet other than 255, then that value
represents the IPX network number that should be used. If each octet is 255, then the RADIUS client should choose
a number and pass it back to the client.

Framed-MTU

Attribute Number

12

Length

6

Value

INTEGER

Allowed in

Access-Request, Access-Accept

Prohibited in

Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

This attribute allows the RADIUS server to set the connection's maximum transfer unit (MTU) size to align
communications with the way an administrator has configured his network equipment. Briefly, the MTU setting is the
largest packet size that can be transmitted over a connection. If the packet size is larger than this value, then the
packet is broken up by routers along the path to the destination and then reassembled at the end point.

The RADIUS server will expect the value of this attribute to be somewhere between 64 and 65,535. Most clients or
servers will send this attribute, containing a default MTU size of 1,500, inside an Access-Accept packet.

It's important to note that only implementations that strictly support RFC 2138 prohibit the
Framed-MTU attribute from being passed in Access-Request. The new RADIUS draft
supports this, but some implementations may not have been upgraded to support this
change.

Framed-Protocol

Attribute Number

7

Length

6

Value

ENUM

Allowed in

Access-Request, Access-Accept

Prohibited in

Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

This attribute signals what type of protocol to use over a link-frame connection. The server treats this attribute as a
hint if received inside an Access-Request packet and a required condition if received in an Access-Accept packet.
The value of this attribute can range from 1 to 6; Table 3-2 lists the values and their corresponding link protocols.

Table 3-2. Framed-protocol attribute values

Value

Link protocol

1

PPP

2

SLIP

3

ARAP

4

Gandalf SLP/MLP

5

Xylogics IPX/SIP

6

X.75 Synchronous

This attribute should be used when the Service-Type attribute is set to Framed.

Framed-Route

Attribute Number

22

Length

3 or more octets

Value

STRING

Allowed in

Access-Accept

Prohibited in

Access-Request, Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

Unlimited

The Framed-Route attribute is used to carry string values corresponding to information to set up a client routing table.
The information contained in the STRING-format value is very similar to the information contained in the Windows
netstat program. Here is a sample output from netstat -rn run on a Windows 2000 Professional machine for
reference:
 ===
Interface List
0x1 MS TCP Loopback interface
0x2 ...00 50 56 c0 00 08 VMware Virtual Ethernet Adapter
0x3 ...00 50 56 c0 00 01 VMware Virtual Ethernet Adapter
0x1000005 ...00 a0 cc 60 b6 6d NETGEAR FA310TX Fast Ethernet PCI Adapter
===
===
Active Routes:
Network Destination Netmask Gateway Interface Metric
 0.0.0.0 0.0.0.0 192.168.1.10 192.168.1.100 1
 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
 192.168.1.0 255.255.255.0 192.168.1.100 192.168.1.100 1
 192.168.1.100 255.255.255.255 127.0.0.1 127.0.0.1 1
 192.168.1.255 255.255.255.255 192.168.1.100 192.168.1.100 1
 192.168.208.0 255.255.255.0 192.168.208.1 192.168.208.1 1
 192.168.208.1 255.255.255.255 127.0.0.1 127.0.0.1 1
 192.168.208.255 255.255.255.255 192.168.208.1 192.168.208.1 1
 192.168.209.0 255.255.255.0 192.168.209.1 192.168.209.1 1
 192.168.209.1 255.255.255.255 127.0.0.1 127.0.0.1 1
 192.168.209.255 255.255.255.255 192.168.209.1 192.168.209.1 1
 224.0.0.0 224.0.0.0 192.168.1.100 192.168.1.100 1
 224.0.0.0 224.0.0.0 192.168.208.1 192.168.208.1 1
 224.0.0.0 224.0.0.0 192.168.209.1 192.168.209.1 1
 255.255.255.255 255.255.255.255 192.168.208.1 192.168.208.1 1
Default Gateway: 192.168.1.10
===
Persistent Routes:
 None
Route Table

The information in the attribute value must include a destination address, a gateway address, and relevant (but
optional) metrics. The RFC suggests that each routing entry be masked in standard CIDR notation. For example, the
format for a standard entry would be:
 <n.n.n.n>/<nn> <n.n.n.n>/<nn> [<metrics>]

So an entry directing hosts 192.168.2.0 through 192.168.3.0 to a gateway router at 192.168.10.5 would be:
 192.168.2.0/23 192.168.10.5/32 1

There are several other ways in which this value can be carried and interpreted:

•

If some network devices don't support CIDR notation, then the /nn representation can signal the number of
bits (8, 16, or 24) to use instead of classful routing. If this is not present, the RADIUS client will resort to the
traditional routing of an 8-bit class A address, a 16-bit class B address, or a 24-bit class C address.

•

The gateway address can be assigned to the client's interface by passing 0.0.0.0 as the gateway routing entry
in this attribute.

•

RADIUS implementations are mandated by the RFC to support multiple instances of this attribute inside an
Access-Accept packet. Primarily, support for multiple iterations allows custom routing tables to be built for a
client, but the applications are not limited to that.

Framed-Routing

Attribute Number

10

Length

6

Value

ENUM

Allowed in

Access-Accept

Prohibited in

Access-Request, Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

The routing policies of the client connections are set using the value of this attribute. In some cases, clients may act as
routers, passing packets to computers and/or connections other than themselves. In these circumstances, the
RADIUS client will need to be able to listen to the broadcasts this client router sends out about its route paths. The
values in this attribute, ranging from 0 to 3 and described in Table 3-3, depict the broadcast behaviors for the
connection in question.

Table 3-3. Framed-routing attribute values

Value

Broadcast policy

0

None

1

Broadcast routing tables and notifications

2

Listen for routing notification broadcasts

3

Broadcast and listen for notifications

The RFC does not require or recommend a specific routing policy protocol, such as router information protocol
(RIP) or open-shortest-path-first (OSPF), nor does it designate specific routing announcements to be broadcast or
ignored. In other words, the doors are wide open.

Idle-Timeout

Attribute Number

28

Length

6

Value

ENUM

Allowed in

Access-Accept, Access-Challenge

Prohibited in

Access-Request, Access-Reject

Presence in Packet

Not required

Maximum Iterations

1

An administrator may configure the Idle-Timeout attribute so that the client gear or RADIUS server disconnects a
session after a predetermined period of inactivity. The value in this attribute, four-octets long, is the maximum number
of seconds a connection may remain active yet idle.

The Idle-Timeout attribute was a good idea for its time. Unfortunately, an administrator must be wary of many small
software applications that exist today that are designed to defeat this mechanism. The software ranges in complexity
from simple to—wait for it—complex. The lower end of the software simply pings a random server at steady
intervals (usually every minute), while the upper end uses sophisticated algorithms to generate traffic more regular yet
unpredictable than a ping.

Login-LAT-Group

Attribute Number

36

Length

34

Value

STRING

Allowed in

Access-Request, Access-Accept

Prohibited in

Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

The LAT protocol uses a form of authentication based on a bit pattern known as the "group code," and this RADIUS
attribute allows the group code to be carried inside Access-Request and Access-Accept packets. Much like other
attributes that can be found inside both the Request and Accept packets, its presence inside the Request packet is
simply a hint, while its presence in the Accept packet is definite.

If this attribute is present, then the Login-Service attribute must also be present.

RADIUS and Local Area Transport

These attributes are specific to RADIUS's support of the Local Area Transport (LAT) protocol,
originally developed by Digital Equipment for use of networks consisting of VAX equipment. LAT is
unique because it allows the client to create a virtual terminal connection by using asynchronous
connections across some type of LAN.

LAT has some specific characters and operators that it recognizes inside a packet, so the RADIUS
RFC has created a special string data type called LAT STRING, which distinguishes some characters,
$, -, ., _, and most of the characters in the ISO Latin-1 set. Further, these strings must be case sensitive.

Login-LAT-Node

Attribute Number

35

Length

3 or more octets

Value

STRING

Allowed in

Access-Request, Access-Accept

Prohibited in

Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

This attribute and its corresponding value indicate the LAT node to which a client should be connected. If this
attribute is present in an Access-Accept packet, the Login-Service must also be present.

The Login-LAT-Node attribute operates under the LAT STRING modifications to the RADIUS RFC, and modern
implementations should support distinguishing the characters inside the value.

Login-LAT-Port

Attribute Number

63

Length

4 octets

Value

ENUM

Allowed in

Access-Request, Access-Accept

Prohibited in

Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

The Login-LAT-Port attribute designates the port to which the client should be connected. Like the other
LAT-related attributes, this one must be accompanied by the Login-Service attribute inside an Access-Accept
packet to indicate that LAT service is indeed desired.

This attribute also operates under the LAT STRING specification in the RADIUS RFC, meaning some characters
inside the string value should be distinguished by the RADIUS implementation.

Login-LAT-Service

Attribute Number

34

Length

3 or more octets

Value

STRING

Allowed in

Access-Request, Access-Accept

Prohibited in

Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

There are often other auxiliary services associated with LAT service, and this attribute provides a means for access
to those services to be granted to the client. The Login-Service attribute must be included in the same packet and
specify the LAT service.

Some LAT services are offered on other machines and may require more information to authenticate, or they may
need access to other machines to provision the service. The Login family of standard RADIUS attributes may be
used for this purpose in conjunction with the standard LAT attribute family.

This attribute also operates under the LAT STRING specification in the RADIUS RFC, meaning some characters
inside the string value should be distinguished by the RADIUS implementation.

Login-IP-Host

Attribute Number

14

Length

6

Value

IPADDR

Allowed in

Access-Request, Access-Accept

Prohibited in

Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

Unlimited

This value carries the IP address of the host that provides the login service for a specific connection. Most commonly
this IP address is the address of the actual host, but there are two reserved values that specialize the RADIUS client's
behavior. If a value of 255.255.255.255 (0xFFFFFFFF) is placed in this attribute, then the client needs to assign this
host IP itself. If a value of 0.0.0.0 (0x00000000) is placed in this attribute, then the client user should determine and
configure this IP address for his connection.

Multiple instances of this packet may be present. The RFC doesn't specify what behavior the RADIUS client should
present when it encounters this, but an educated guess would be to allow a selection of host IP addresses for
redundancy, fault tolerance, and load balancing.

Login-Service

Attribute Number

15

Length

6

Value

ENUM

Allowed in

Access-Accept

Prohibited in

Access-Request, Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

This value specifies the type of service granted to the client. This attribute is intended for use in situations where plain
terminal dial-up (i.e., to a shell account) is used. The attribute is exclusive from other framed protocol services. There
are eight possible enumerated values for this attribute, which are listed in Table 3-4.

Table 3-4. Login-service attribute values

Value

Login service type

0

Telnet

1

Rlogin

2

TCP Clear

3

PortMaster (Lucent/Livingston)

4

LAT

5

X25-PAD

6

X25-T3POS

7

TCP Clear Quiet

A few of these services deserve further mention.

The standard services that are found most commonly in practice are the Telnet (0) and Rlogin (1) services. Both
function to create a connection between the client and the remote host with the RADIUS client acting as a sort of
proxy to each party. Most often these services are used to connect users to a Unix shell account or some other
terminal service. TCP Clear (2) and TCP Clear Quiet (7) open a direct stream of TCP connectivity between the
client and a remote host (the Quiet option simply suppresses announcements from the RADIUS client). The
PortMaster (3) service is a proprietary service that connects the user to Livingston (now Lucent) NAS equipment.
Finally, the LAT service (4) is used with the Login-LAT family of standard RADIUS attributes.

Login-TCP-Port

Attribute Number

16

Length

6

Value

INTEGER

Allowed in

Access-Accept

Prohibited in

Access-Request, Access-Reject, Access-Challenge

Presence in Packet

Required, unless NAS-IP-Address is present

Maximum Iterations

1

This attribute specifies the remote port used to connect the client to the login service given by the Login-Service
attribute. The range of values allowed for this attribute are between 0 and 65,535, though the standard ports below
1,024 are considered privileged and usually require an administrator to configure the service to listen on those ports.

In transactions involving a proxy server, this value can become mangled.

NAS-Identifier

Attribute Number

32

Length

3 or more octets

Value

STRING

Allowed in

Access-Request

Prohibited in

Access-Accept, Access-Reject, Access-Challenge

Presence in Packet

Required, unless NAS-IP-Address is present

Maximum Iterations

1

This attribute identifies the NAS that constructed the Access-Request packet. Most often, the fully qualified domain
name (FQDN) is used in the value portion of this attribute (for instance, local-nas3.raleigh.corp.hasselltech.net),
although the RFC states that the value must be treated as a series of undistinguished octets. The FQDN is often used
to eliminate duplicate NAS identifiers and reduce confusion for the client.

This attribute is often vendor specific and each implementation may have customized the use and behavior of this
attribute. Additionally, in transactions involving a proxy server, this value can become mangled.

NAS-IP-Address

Attribute Number

4

Length

6

Value

IPADDR

Allowed in

Access-Request

Prohibited in

Access-Accept, Access-Reject, Access-Challenge

Presence in Packet

Required, unless NAS-Identifier is present

Maximum Iterations

1

This attribute specifies the IP address of the NAS gear that requests service on behalf of the client computer. Each
implementation may customize the use and behavior of this attribute, but the RADIUS RFC does not permit both this
attribute and the NAS-Identifier attribute to be used in the same packet. However, one of the two must be present in
any packet.

NAS-Port

Attribute Number

5

Length

6

Value

INTEGER

Allowed in

Access-Request

Prohibited in

Access-Accept, Access-Reject, Access-Challenge

Presence in Packet

Required, unless NAS-Port-Type is present

Maximum Iterations

1

The value in this attribute represents the port to which the client user is connected. It is important to note that this
value is not the socket port which might identify the protocol the client is using; this value represents the actual,
tangible, physical port on the NAS gear to which the client has connected.

The information passed in this value can be useful for identifying load problems or debugging connection problems,
either in the NAS itself or possibly in the hunt group connected to that NAS. Most NAS vendors include special
software to configure how this information is supplied and most also include special software that will generate
algorithms based on the slot number of the NAS, the specific modem, and the NAS port that show call center
distribution and other statistical gems.

This attribute can co-exist with the NAS-Port-Type attribute. One of the two attributes, though, must always be
present in a packet.

NAS-Port-Type

Attribute Number

61

Length

6

Value

ENUM

Allowed in

Access-Request

Prohibited in

Access-Accept, Access-Reject, Access-Challenge

Presence in Packet

Required, unless NAS-Port is present

Maximum Iterations

1

The enumerated value in this attribute depicts what kind of NAS port to which the user has connected. There are 20
physical port types, which are listed in Table 3-5.

Table 3-5. NAS-Port-Type attribute values

Value

Type of port

0

Asynchronous

1

Synchronous

2

ISDN Synchronous

3

ISDN Asynchronous V.120

4

ISDN Asynchronous V.110

5

Virtual

6

PIAFS

7

HDLC Clear Channel

8

X.25

9

X.75

10

G.3 Fax

11

SDSL

12

ADSL-CAP

13

ADSL-DMT

14

IDSL

15

Ethernet

16

XDSL

17

Cable

18

Wireless other

19

Wireless CCITT 802.11

This list of ports covers almost all of the types that would be used in practice. For clarification, I'll discuss a few of
the different options that are more commonly found in everyday use:
 Asynchronous connections (0)

The most common type of port used for dial-up clients.
 Synchronous (2) connections

ISDN clients most often use this connection, but they may also use two flavors of asynchronous (3 and 4)
connections as well.
 PIAFS (6), or PHS Internet Access Forum Standard

A protocol used primarily in Japan to allow access to devices such as digital cameras, connection concentrators,
cellular and mobile telephones, and other handy devices.
 Symmetric DSL (11), asymmetric DSL (12 and 13), and DSL over ISDN (14)

Are offered for DSL types.
 802.11b protocol (19)

Most often used for wireless connections.

Port-Limit

Attribute Number

62

Length

6

Value

INTEGER

Allowed in

Access-Accept, Access-Request

Prohibited in

Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

The value of this attribute dictates the upper limit on the number of ports that NAS is authorized to give to the client.
In practice, the use of this packet is most often found in support for bonding channels together with ISDN or for
multilink point-to-point (MLPPP) protocol, which allows a user to aggregate two modems and phone lines into one
IP channel.

There are a couple of caveats to the implementation of the Port-Limit attribute. The problem lies squarely in the fact
that the enforcement of this attribute is done at the NAS machine, not at the RADIUS server. In implementations
where there is more than one NAS machine, the effective port-limit would be the number of NAS machines present
multiplied by the value in Port-Limit. Realistically, some sort of mechanism is needed to keep track of active logins
over the entire network lest the efficacy of the Port-Limit attribute be reduced to zero. This exemplifies the need for
some sort of third-party session management software, especially in large, distributed networks.

Proxy-State

Attribute Number

33

Length

3 or more octets

Value

STRING

Allowed in

All

Prohibited in

None

Presence in Packet

Not required

Maximum Iterations

Unlimited

This attribute is used when a RADIUS server acts as a proxy and needs to save information about an outstanding
request, such as IP addresses, domain names, or other unique integer identifiers. There are a couple of rules to use
this attribute, as specified by the RFC:

•

If the Proxy-State attribute is found in an Access-Request packet, the information must be included
unmodified in the response to the packet, whether the packet is accepted, challenged, or rejected.

•

Since multiple instances of this attribute are allowed inside a packet, the order in which they are presented is
relevant. When the values of the State attribute are copied, they must be copied in the order in which they
were included in the original packet.

It should be noted that some RADIUS client equipment does not follow the RFC specification for the Proxy-State
attribute, and this can result in the mangling of any data included in the AVP.

Reply-Message

Attribute Number

18

Length

3 or more octets

Value

STRING

Allowed in

Access-Accept, Access-Reject, Access-Challenge

Prohibited in

Access-Request

Presence in Packet

Not required

Maximum Iterations

Unlimited

This value is used to provide a message to the client in response to another packet. It is often found in
Access-Accept messages to provide a welcome message, an error message, or other information to the user.

It is not prudent for an administrator to bet on the end user seeing whatever message is sent in the Reply-Message
attribute. Specific consumer/client software may ignore the attribute or present its own notification to the user based
on the packet in which this attribute is found.

Service-Type

Attribute Number

6

Length

6

Value

ENUM

Allowed in

Access-Accept, Access-Request

Prohibited in

Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

This attribute describes the type of network service that is offered by the RADIUS client gear to the service
consumer. The value, a four-octet enumerated integer, works in conjunction with other attributes present in the
Access-Request and Access-Accept packets to define and further qualify an offered service. There are 11 specific
values appropriate for this attribute, which are listed in Table 3-6.

Table 3-6. Service-Type attribute values

Value

Service type

1

Login

2

Framed

3

Callback Login

4

Callback Framed

5

Outbound

6

Administrative

7

NAS Prompt

8

Authenticate Only

9

Callback NAS Prompt

10

Call Check

11

Callback Administrative

In the following section, I'll step through each of these predefined service types and discuss their functions within the
client transaction.
 Login

This value allows the user to have terminal login service. Several standard attributes can be used to further define and
enhance the service offered to the user, and these values as well as authentication can be passed using an automated
dial-up client rather than sitting at a virtual terminal screen.
 Framed

This value indicates that the connection will use a frame protocol such as PPP or SLIP, and each of these protocols
will likely require further definition and configuration using additional standard RADIUS attributes. The Framed-*
family of attributes defines the IP address, netmask number, MTU, routing, and compression options for a framed
connection.
 Callback Login

This value indicates the current session will be dropped and the network equipment will call the user back. Apart
from that difference, the service is identical to the standard Login (1) service.
 Callback Framed

This value directs the RADIUS client to use a frame-based connection upon calling back the client. Apart from that
difference, the service is identical to the standard Framed (2) service.
 Outbound

Some network service providers may include access to lines available to place outbound calls, and this attribute
indicates that the user should be allowed to use those outbound circuits.
 Administrative

This value indicates to the RADIUS client that the user should be given administrator rights over its configuration.
Some vendors have specific procedures for administrative logins, including entering the administrative user into a
special, enhanced, command environment, a root shell on a NAS machine, or simply modifying their privileges so that
access to configuration is permitted and then treating the user as a standard client.
 NAS Prompt

This value directs the NAS to prompt the user for a login and password directly to the NAS, which may offer the
user a way to execute special commands and configurations normal clients would not have.
 Authenticate Only

Some implementations may store service information and user password and authentication information on different
servers. When a client dials in, sometimes all that is needed is a signal of authentication: no services need to be
allowed for or provisioned, and this value directs the RADIUS server to simply perform the authentication without
any extra overhead. This value would most likely be found in practice in a proxy configuration, in which the
authorizing server may not have access to the equipment being provisioned. In this case, the proxy would pass just
the authentication information to the authorizing server without any service detail. Upon authenticating, the authorizing
server would simply pass the Access-Accept back to the proxy, and the proxy then inserts the relevant service
information.
 Callback NAS Prompt

This value indicates that the NAS should call the user back and then prompt him for a login and password to access
the NAS machine proper. Apart from that difference, this service is identical to the NAS Prompt (7) service.
 Call Check

In basic terms, the Call Check value allows an administrator to configure his implementation so that authentication
takes place before calls are negotiated on the NAS equipment. Let's take a look at this in more detail.

The typical sequence of events in a RADIUS transaction follows a pattern: the user dials the NAS equipment, the
NAS equipment answers and the modem negotiation (the ever-present "screeching") follows, and finally, the server
receives the access requests and either accepts or rejects them. The Call Check value allows some slight yet effective
modifications to this sequence.

Say, for instance, a user is in a hotel, which charges for telephone use by the minute. On top of that, the user will
incur long-distance charges. It is desirable in these circumstances to allow a call to fail as soon as possible if it is
indeed known the call will be rejected. An administrator can configure his RADIUS implementation so that the
Access-Request packets are sent before the modem negotiations are finished. If the call will fail, the modems are
disconnected, and the user has not had to wait for the negotiation procedures to finish for him to find out his call is
rejected. This can save a lot of money on connection charges and, arguably more importantly, it doesn't waste the
client's time.

The implementation of this feature depends a great deal on which vendor manufacturers the NAS and RADIUS
server, but two keys to check for are the Service-Type attribute being set to Call Check (8), and the User-Name
attribute being the distinguished name or the called station identifier.
 Callback Administrative

This value indicates that the NAS should drop the immediate connection and call the user back with the connection
set up so that the called-back user has administrative privileges of the NAS machine itself. Apart from that difference,
this service is identical to the Administrative (6) service.

Session-Timeout

Attribute Number

27

Length

6

Value

INTEGER

Allowed in

Access-Accept, Access-Challenge

Prohibited in

Access-Request, Access-Reject

Presence in Packet

Not required

Maximum Iterations

1

This attribute indicates the maximum length of time in seconds that a user may remain connected to the network
before the RADIUS client will kick him off. This is primarily used to enforce connect-time limits on certain account
package types or to prevent camping on a line. (Camping is when a user treats a non-dedicated connection, such as
a dial-up account, as a dedicated connection by keeping the line up 24 hours a day, 7 days a week.)

Much like the Idle-Timeout attribute, there are many software packages meant for the client side that detect a
disconnected session and immediately reconnect it. There is no inherent mechanism on the RADIUS server, at least
as specified in the RFC, to prevent usage of this software, since the Session-Timeout value is just a counter that is
stateless and memory-less. It can be and is reset each time a new connection is made.

State

Attribute Number

24

Length

3 or more octets

Value

STRING

Allowed in

Access-Accept, Access-Request, Access-Challenge

Prohibited in

Access-Reject

Presence in Packet

Not required

Maximum Iterations

1

The State attribute, valid over an entire connection session, is an implementation-specific attribute that can be used
for a variety of purposes. For example, in a proxy implementation, some session information may need to be saved
and accessed to expedite authentication or provide services for inherently stateless connections.

The State attribute is part of a group of interchangeable yet singly required attributes: at all times one of the
User-Password, CHAP-Password, or State attributes must be present in a packet. How the RADIUS client
behaves when it sees a State attribute depends on the type of packet in which the attribute is found.

•

If the State attribute is found in an Access-Accept packet, then the RADIUS client must include the value of
the attribute in any new Access-Request packets. For this to work properly, the value of the
Terminate-Action attribute must also be set to RADIUS-Request. (See the next attribute for more
information on Terminate-Action.)

•

If the State attribute is found in an Access-Challenge packet, then the value of the State attribute must be
included, unmodified, in the Access-Request packet sent in response to the challenge. It is NOT permitted
for the RADIUS client to interpret the value of State, and no operation of the core protocol may be affected
by the value of State.

Terminate-Action

Attribute Number

29

Length

6

Value

ENUM

Allowed in

Access-Accept

Prohibited in

Access-Request, Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

This attribute passes a value that dictates the behavior that the RADIUS client gear should portray upon terminating a
client's connection. There are two possible values for this attribute, neither of which are required to be supported by
the RADIUS server (but the lack of support of these values cannot affect the standard operation of the core
RADIUS protocol): a 0, to indicate the server should perform its default termination action; and a 1, to indicate the
client desires to have the RADIUS client send new Access-Request packets upon a session's completion.

User-Name

Attribute Number

1

Length

3 or more octets

Value

STRING

Allowed in

Access-Request, Access-Accept

Prohibited in

Access-Reject, Access-Challenge

Presence in Packet

Not required

Maximum Iterations

1

This attribute carries the distinguished name of the client requesting access to services on the network. Since
usernames come in all sizes and flavors, there is not a specified maximum length for this value. It has been
recommended by the RADIUS committee and those who follow its proceedings that support for a larger username
space be provided (up to 64 bytes in length) to allow the implementation-specific RADIUS client gear to perform its
own compliancy and validity checking. This allows each administrator to customize the requirements for a valid
username without having a standard dictate to them how usernames are constructed.

There are no specific requirements for the format in which these usernames must be represented, but there are a
number of possible ways in which usernames are commonly passed in the User-Name attribute. Monolithic, or
alphanumeric, passwords consist of all letters and numbers. UTF-8 characters are also supported. Additionally,
usernames can be passed that conform to the Network Access Identifier (NAI) ASN.1 format—this is often known
as the "distinguished name"—or some other format common to both the client and the RADIUS implementation.
Because of this flexibility, administrators have a wide realm of possibilities for creating username standards.

RADIUS servers may also use a username to determine appropriate behavior for a transaction. For instance, if a
username is passed in realm format (i.e., WEST/aslyter), then the RADIUS server may change its configuration to
act as a proxy for that transaction, forwarding the request to an appropriate server within the WEST realm. Of
course, the username can be ignored and simply passed, in which the RADIUS server acts like a transparent proxy
and simply hands the requests on without filtering or preprocessing.

User-Password

Attribute Number

2

Length

18 to 130 octets

Value

STRING

Allowed in

Access-Request

Prohibited in

Access-Accept, Access-Reject, Access-Challenge

Presence in Packet

Required, unless CHAP-Password is present

Maximum Iterations

1

This attribute is designed to carry authentication information that a user provides in order to gain access to network
services. Primarily, the content of this value will be an encrypted password, but sometimes it can be the response
from an Access-Challenge packet sent to the client from the RADIUS server. Most commonly, the length of the
value is 16 octets, which is the RFC minimum, but the RFC also permits the value of this attribute to span as long as
130 octets.

As mentioned in Chapter 1 and Chapter 2, the presence of the User-Password attribute typically indicates that the
given transaction will use PAP authentication in lieu of CHAP. Refer to Chapter 2 for an explanation of the hiding and
encrypting process used in PAP authentication.

Vendor-Specific

Attribute Number

26

Length

7 or more octets

Value

STRING

Allowed in

Access-Accept, Access-Request, Access-Challenge

Prohibited in

Access-Reject

Presence in Packet

Not required

Maximum Iterations

Unlimited

This attribute is used to carry attributes that are not specified in the RADIUS RFC. Vendors, NAS manufacturers,
and others may want to transmit various implementation-specific information to the client and server and, thus, need a
way to pass that information. However, this vendor information passed in addition to the standard global attributes
absolutely cannot affect the operation of the base RADIUS protocol in any way. In Chapter 2, I discussed the format
of a vendor-specific AVP and how one is carried inside this attribute.

Of particular interest is the type of this attribute. It is listed as a STRING type, but effectively it is seen as a pattern of
undistinguished octets—this is to ensure the parts of the implementation that are not aware of the vendor-specific
values do not misconfigure themselves or otherwise do detriment to the connection. Further, the value of the VSA
within the vendor-specific AVP actually has several specification fields—think of them as "microfields" that further
qualify the VSA. This eliminates any confusion and conflict between attributes specific to a vendor's implementation
and attributes generally available per the RADIUS RFC.

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

Chapter 4. RADIUS Accounting

ISPs often manage points of presence over several locations, most likely geographically dispersed. All of these points
of presence require protection to guard against unauthorized use of the expensive network to which they allow
access. Although the front line of defense may (and should) be a robust and extensible form of authentication (to
verify a user's declared identity) and authorization (to provide a user with only the services to which he is entitled),
much valuable information can be gleaned from data collected about users' activities on the network. Which user
logged on? When did she do so? What services was he granted?

The data becomes even more useful when it is compiled to analyze a group of users. What is the average call time for
a user? How much data does that user transfer? Do I, as a system administrator, need to set a time limit for a single
session so as to protect limited dial-in resources? Do I have users that are abusing an on-demand connection? All of
these questions can be answered using information mined from the accounting process.

RADIUS supports a full-featured accounting protocol subset, which allows it to satisfy all requirements of the AAA
model. This chapter describes the design, operation, packets, and attributes that are specific and germane to
RADIUS accounting.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

4.1 Key Points in RADIUS Accounting

The design of accounting in RADIUS is based upon three major characteristics:
 Accounting will be based on a client/server model.

The RADIUS accounting machine is the server to the RADIUS client gear, which acts as the client. The client passes
the usage data to the RADIUS server for processing. The RADIUS server acknowledges successful receipt of the
data. It is also possible for the RADIUS server to act as an accounting proxy, much like the similar capability in the
authentication and authorization realms.
 Communications between devices will be secure.

All data is passed to and from the RADIUS server and the client gear through the use of a shared secret, which is
never transmitted across the wire.
 RADIUS accounting will be extensible.

The format of the accounting attributes is much like those of the authentication and authorization attributes, in that
most of the services offered by the implementations can be defined and qualified using AVPs. AVPs can be added
and modified to an existing implementation without disrupting the functionality already in use.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

4.2 Basic Operation

All communications regarding RADIUS accounting are done with an Accounting-Request packet. A client that is
participating in the RADIUS accounting process will generate an Accounting Start packet, which is a specific kind of
Accounting-Request packet. This packet includes information on which service has been provisioned and on the user
for which these services are provided. This packet is sent to the RADIUS accounting server, which will then
acknowledge receipt of the data. When the client is finished with the network services, it will send to the accounting
server an Accounting Stop packet (again, a specialized Accounting-Request packet), which will include the service
delivered; usage statistics such as time elapsed, amount transferred, average speed; and other details. The accounting
server acknowledges receipt of the stop packet, and all is well. If the server does not or cannot handle the contents
of the Accounting-Request packet, it is not allowed to send a receipt acknowledgment to the client.

In this instance, the RFC recommends that a client continue to send its packets to the accounting server when it has
not received an acknowledgment that its Accounting-Request packet has been processed. In fact, in large distributed
networks, it is desirable to have several accounting servers act in a round-robin fashion to handle failover and
redundancy needs. An administrator can carry this mentality further and designate certain accounting servers to
handle different requests—one for his dial-up users, one for his DSL customers, and yet another for ISDN
connections. Additionally, the proxy functionality present in the authentication and authorization realms of RADIUS
are also allowed in the accounting phase, as the accounting server may make requests of other servers to assist in the
processing of Accounting-Request packets.

4.2.1 More on Proxying

RADIUS accounting proxies act in much the same way as RADIUS authentication/authorization proxies do.
Consider the following process:

1.

The RADIUS client gear sends the Accounting Start packet to the accounting server.

2.

The receiving accounting server logs the packet. It may then add the Proxy-State attribute and accompanying
details (though it is not required to do so). It updates the request authenticator and then forwards the
information to a remote machine.

3.

This remote machine logs the incoming, forwarded packet. It then does what the first server could not do
(that is to say, it performs the action that was required of the proxy), retains and copies all of the Proxy-State
attributes exactly as they appeared, and sends an Accounting-Response packet back to the original
forwarding server.

4.

The original forwarding server receives the acknowledgment, strips out the Proxy-State information,
constructs and adds the Response Authenticator, and sends the modified acknowledgment response back to
the RADIUS client gear.

Figure 4-1 shows the flow of this process.

Figure 4-1. The proxying process for RADIUS accounting

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

4.3 The Accounting Packet Format

As mentioned in Chapter 2, the RADIUS protocol uses a UDP foundation to transmit packets between clients,
servers, and proxies. While the original RADIUS accounting RFC (number 2139, to be exact) specified that
accounting transactions should take place on port 1646, the latest RFC (2866) changed the port to 1813, because
port 1646 was already assigned to the sa-msg-port service.

The packets are broken down into four distinct regions, which are discussed next.

4.3.1 Code

The code region is one-octet long and indicates the type of RADIUS accounting information transmitted in that
packet. Packets with invalid code fields are thrown away without notification. Valid codes are:
 4

Accounting-Request
 5

Accounting-Response

4.3.2 Identifier

The identifier region is one-octet long and is used to perform threading, or the automated linking of initial requests and
subsequent replies. RADIUS accounting servers can generally intercept duplicate messages by examining such
factors as the source IP address, the source UDP port, the time span between the suspect messages, and the
identifier field.

4.3.3 Length

The length region is two-octets long and is used to specify the length of a RADIUS accounting message. The value in
this field is calculated by analyzing the code, identifier, length, authenticator, and attribute fields and finding their sum.
The length field is checked to ensure data integrity when an accounting server receives a packet. Valid length values
range between 20 and 4095.

The RFC specification requires certain behaviors of RADIUS servers with regard to incorrect length data. If the
accounting server receives a transmission with a message longer than the length field, it ignores all data past the end
point designated in the length field. Conversely, if the server receives a shorter message than the length field reports,
the server will discard the message.

4.3.4 Authenticator

The authenticator region, often 16-octets long, is the field in which the integrity of the packet's payload is inspected
and verified. In this field, the most important octet—the value used to authenticate replies from the accounting
server—is transmitted before any other.

There are two distinct types of authenticators: the request and response authenticators. Request authenticators,
consisting of 16-octet MD5 checksums, are computed using a hash generated from the code, identifier, length,
attributes, shared secrets, and 16 "zeroed-out" octets. The value returned from this hash is then placed into the
authenticator field.

It's important to notice the distinction between how the request authenticator is computed
in the accounting phase and the authentication/authorization phase. The difference lies
squarely in the fact that in accounting packets, the User-Password attribute is not included.

The response authenticator is calculated in much the same way as the request authenticator. An MD5 hash is
generated using the values from the code, identifier, length, request authenticator from the original request, and
response attributes; the value from this hash is placed in the authenticator field.

It also is important to point out that some early RADIUS and NAS implementations send some accounting packets
with the authenticator region set to all zeroes. While the RFCs have been modified to specifically forbid this behavior,
for backward compatibility purposes some RADIUS servers can accept packets exhibiting this behavior.

4.3.5 Reliability of Accounting

While the specification for RADIUS accounting is promising, experience sees that accounting packets are not a sure,
100% certainty. For example, if a client sends accounting packets to a server but receives no acknowledgment or
response, he will continue to send the same packet for only a limited time. This results in some sessions with
inconsistent records. This presents problems with operations that require great consistency and accuracy: billing is a
prime but certainly not sole example. While progress is being made in improving the reliability of the accounting
mechanism (mainly with interim records, which are covered in Chapter 9), you should be aware of the problem.

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

4.4 Accounting Packet Types

At this point, we have covered the structure of the packets that RADIUS uses to transmit accounting data. But we
need to establish the identity and properties of these specific packets. There are two RADIUS packet types that are
relevant to the accounting phase of an AAA transaction:

•

Accounting-Request

•

Accounting-Response

The next section will step through these packets and detail their intent, format, and structure.

Accounting-Request

Packet Type

Request

Code

4

Identifier

Unique for each request; unique for each transmission of
modified data

Authenticator

Request

Attribute Data

0 or more attributes

Accounting-Request packets are sent from the client to the server. Remember that a client can be a true RADIUS
client or another RADIUS server acting as a proxy. The client sends the packet with the code field set to 4. When
the server receives this request packet, it is required to transmit an acknowledgment to the client unless it cannot
handle or process the packet. In this case, it cannot transmit anything to the client.

With the exceptions of the User-Password, CHAP-Password, Reply-Message, and State attributes, any other
attribute allowed in an Access-Request or Access-Accept packet can be used inside an Accounting-Request packet.

Chapter 3 discusses all standard RADIUS attributes and their properties, including the
packets in which they are allowed to be included. Check there for a complete overview of
packet presence requirements.

There are a couple more caveats to presence in the packet. As mentioned in Chapter 2, the NAS-IP-Address and
NAS-Identifier attributes are mutually exclusive, meaning that one or the other must be included in a packet, but not
both. The RFC recommends distinguishing the NAS port or type of port in the packet by using the NAS-Port or
NAS-Port-Type attributes unless that information is superfluous to the service. Additionally, the Framed-IP-Address
must include the real IP address of the user.

Accounting-Response

Packet Type

Response

Code

5

Identifier

Identical to corresponding Accounting-Request

Authenticator

Response

Attribute Data

0 or more attributes

The Accounting-Response packets are primarily designed as acknowledgment packets to be sent from the
accounting server to the client, indicating that the request from the client has been received and logged. If the packet
was indeed processed and logged successfully, the RFC mandates that the code field of the acknowledgment section
be set to 5 to indicate a response. Since the identifier of the response packet is identical to the corresponding
Accounting-Request field, the client can easily match the two packets together to keep track of which requests have
been fulfilled and which are outstanding.

Not only do Accounting-Response packets not have to contain any attributes, but in practice it is rare for them to do
so. However, in the case of a proxy transaction, the Proxy-State attribute can be included in the packet. As well, any
vendor-specific attributes may be included in Accounting-Response packets .

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

4.5 Accounting-specific Attributes

In the following section, I'll cover the attributes of the global RADIUS space that are specific to the accounting phase
of an AAA transaction. Much like in Chapter 3, each of the current 12 accounting-specific attributes will be a
separate tidbit of information, including an at-a-glance properties chart and a short discussion of key points and
important considerations. Again, Appendix A is a chart of the entire global RADIUS attribute list, covering all phases
of the AAA model, and should serve as a useful quick reference.

Acct-Status-Type

Attribute Number

40

Length

6

Value

ENUM

Allowed in

Accounting-Request

Prohibited in

Accounting-Response

Presence in Packet

Required

Maximum Iterations

1

This attribute indicates whether the Accounting-Request packet is being sent upon the user first authenticating and
connecting to the network or upon the user finishing use of the services and disconnecting. It can also be used to
mark when to start and stop accounting should the RADIUS client gear require rebooting or other system
maintenance. Note that when RADIUS client gear crashes, stop records in general are not sent to the accounting
server. Obviously, this has the potential to mess up accounting data, and a crashed client is not all that uncommon.

The payload value of the attribute contains 15 possible values, each of which are listed in Table 4-1.

Table 4-1. Values for the Acct-Status-Type attribute

Value

Status type

1

Start

2

Stop

3

Interim-Update

7

Accounting-On

8

Accounting-Off

9 -14

Reserved; used for tunnel accounting

15

Reserved; used for failed attempts

Acct-Delay-Time

Attribute Number

41

Length

6

Value

INTEGER

Allowed in

Accounting-Request

Prohibited in

Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

The Acct-Delay-Time attribute records how many seconds the client has been trying to push this packet through to
the accounting server. While the significance of this attribute may seem less than overwhelming on the outset, by
subtracting this value from the time a packet arrives at the accounting server, the time of the request-generating event
(a sign-on, sign-off, termination, etc.) can be computed. Network transit time is not factored into this calculation.

As I mentioned earlier, when the attributes of any accounting packet change, the identifier associated with the packet
must be changed as well. This rule carries over into this attribute specifically: when the delay time is changed, a new
identifier must be generated for the new packet.

Acct-Input-Octets

Attribute Number

42

Length

6

Value

INTEGER

Allowed in

Accounting-Request, interim updates

Prohibited in

Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

This attribute, which can only be found in Accounting-Request packets with Acct-Status-Type set to code 2 (Stop)
or interim updates (covered in Chapter 9), indicates the number of incoming octets passed through a specific client
port during one session.

Acct-Output-Octets

Attribute Number

43

Length

6

Value

INTEGER

Allowed in

Accounting-Request

Prohibited in

Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

The opposite of Acct-Input-Octets, this attribute, which can only be found in Accounting-Request packets with the
Acct-Status-Type set to code 2 (Stop), indicates the number of outgoing octets transmitted through a specific client
port during one session.

Acct-Session-ID

Attribute Number

44

Length

3 or more octets

Value

STRING

Allowed in

Accounting-Request

Prohibited in

Accounting-Response

Presence in Packet

Required

Maximum Iterations

1

This attribute is used to uniquely identify a session so that accounting stop and start records can be collated and
recorded accurately. There are a few considerations as to the packets that these attributes can be found in:
 Accounting-Request packets

are required to have Acct-Session-ID.
 Access-Request packets

are allowed to contain this attribute. If this is the case, then the RADIUS client gear is required to use the same
session ID in all packets pertaining to that connection for the duration of that session.

The RFC requires that this session ID be printed using the UTF-8 10646 character set. From RFC 2866: "For
example, one implementation uses a string with an 8-digit upper case hexadecimal number, [sic] the first two digits
increment on each reboot (wrapping every 256 reboots) and the next 6 digits counting from 0 for the first person
logging in after a reboot up to 224-1, about 16 million. Other encodings are possible."

In practice, however, RADIUS client equipment tends to not send the Acct-Session-ID attributes using unique
values. Many reuse these values across reboots, which can make tracking a session in its entirety using accounting
data much more difficult.

Acct-Authentic

Attribute Number

45

Length

6

Value

ENUM

Allowed in

Accounting-Request

Prohibited in

Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

This optional attribute indicates the method with which the user's declared identity was verified. There are three
possible values for this attribute, which are listed in Table 4-2.

Table 4-2. Values for the Acct-Authentic attribute

Value

Authentication method

1

RADIUS

2

Local

3

Remote

The second value, "Local," within the context of this attribute signifies that the client verified the identity of this user of
its own accord through an authentication method other than RADIUS. This can cause problems when matching
accounting data to authentication/authorization information, since no authorization data exists for the session.

Acct-Session-Time

Attribute Number

46

Length

6

Value

INTEGER

Allowed in

Accounting-Request, interim updates

Prohibited in

Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

This attribute, found in Accounting-Request packets and interim records, indicates the time in seconds that a user has
been connected. Note that this attribute can only be present when the Acct-Status-Type attribute inside the request
packet is set to code 2 (Stop).

Acct-Input-Packets

Attribute Number

47

Length

6

Value

INTEGER

Allowed in

Accounting-Request, interim updates

Prohibited in

Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

This attribute, which can only be found in Accounting-Request packets with the Acct-Status-Type set to code 2
(Stop) and in interim accounting updates, indicates the number of incoming packets passed through a specific
RADIUS client port to a framed user during one session.

Acct-Output-Packets

Attribute Number

48

Length

6

Value

INTEGER

Allowed in

Accounting-Request, interim updates

Prohibited in

Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

The opposite of Acct-Input-Packets, this attribute, which can only be found in Accounting-Request packets with the
Acct-Status-Type set to code 2 (Stop) and in interim accounting updates, indicates the number of outgoing packets
transmitted through a specific client port from a framed user during one session.

Acct-Terminate-Cause

Attribute Number

49

Length

6

Value

ENUM

Allowed in

Accounting-Request

Prohibited in

Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

The Acct-Terminate-Cause attribute indicates the reason, if possible and applicable, that a user's session was ended.
Like a good number of the other accounting attributes, the request packet must contain the Acct-Status-Type
attribute set to Stop (code 2).

Listed in Table 4-3 are the 18 possible values for this attribute.

Table 4-3. Values for the Acct-Terminate-Cause attribute

Value

Termination cause

1

User Request

2

Lost Carrier

3

Lost Service

4

Idle Timeout

5

Session Timeout

6

Admin Reset

7

Admin Reboot

8

Port Error

9

NAS Error

10

NAS Request

11

NAS Reboot

12

Port Unneeded

13

Port Preempted

14

Port Suspended

15

Service Unavailable

16

Callback

17

User Error

18

Host Request

Let's take a closer look at each of these termination causes:
 User Request

The user initiated the termination by logging off.
 Lost Carrier

The port could no longer hold DCD.
 Lost Service

For some reason, the service is unavailable for continued provision. Connection interruptions are the most likely
cause.
 Idle Timeout

The configured limit for an idle connection was reached.
 Session Timeout

The configured limit for the length of a single session was reached.
 Admin Reset

The system administrator reset hardware necessary to continue the connection.
 Admin Reboot

The system administrator is terminating all service on a particular machine, most likely immediately preceding a reboot.
 Port Error

The NAS gear encountered an error in the port; service could not be continued.
 NAS Error

The NAS gear encountered an error somewhere other than in the port; service could not be continued.
 NAS Request

The NAS gear terminated the connection for another, unknown reason.
 NAS Reboot

The NAS gear "crashed" and required a reboot. (This attribute is used almost exclusively for nonadministrative
restarts.) Unfortunately, this is not a reliable mechanism, as this signal is often not sent on a reboot. Lobby your NAS
manufacturer for a fix if your equipment is affected by this.
 Port Unneeded

The NAS, through some algorithm, determined that the port was no longer needed to continue maintaining a certain
threshold of quality of service.
 Port Preempted

A higher priority thread required the use of the port.
 Port Suspended

The NAS requested to end a virtual session by suspending it.
 Service Unavailable

For whatever reason, the NAS gear is unavailable to service the request.
 Callback

The NAS is ending the current connection so that it may dial the user back to continue his service.
 User Error

The user input data incorrectly.
 Host Request

The host ended the session predictably and as expected.

Acct-Multi-Session-ID

Attribute Number

50

Length

3 or more octets

Value

STRING

Allowed in

Accounting-Request

Prohibited in

Accounting-Response

Presence in Packet

Not required

Maximum Iterations

Unlimited

This attribute contains a unique ID that can be used to "thread" data from multiple related sections together into one
log file. The Acct-Session-ID for each session would be unique, but all would be linked by a common
Acct-Multi-Session-ID. This is useful for applications where multilinking and channel-bonding services, such as
multilink PPP, are provided and supported. More details on these services are provided in Chapter 6.

Acct-Link-Count

Attribute Number

51

Length

6

Value

INTEGER

Allowed in

Accounting-Request

Prohibited in

Accounting-Response

Presence in Packet

Not required

Maximum Iterations

Unlimited

This attribute indicates the number of current sessions in a multilink transaction. The way this value is determined is of
particular interest. Let's examine it more closely.

The value field simply shows the number of times links have been observed by the accounting server whose
connections are using the same Acct-Multi-Session-ID. The following is a tabulation example of link counts. By using
these link counts and enumerating each Accounting Stop packet received, the accounting server can determine when
its recordkeeping is complete for any given multilink session:
 Multi-Session-ID Session-ID Status-Type Link-Count
52 21 Start 1
52 22 Start 2
52 23 Start 3
52 22 Stop 3
52 21 Stop 3
52 24 Start 4
52 23 Stop 4

52 22 Stop 4

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

Chapter 5. Getting Started with FreeRADIUS

Up to this point, I've talked about the theoretical underpinnings of both the authentication-authorization-accounting
(AAA) architecture as well as the specific implementation of AAA characteristics that is the RADIUS protocol. I will
now focus on practical applications of RADIUS: implementing it, customizing it for your specific needs, and extending
its capabilities to meet other needs in your business. First, though, I need a product that talks RADIUS.

Enter FreeRADIUS.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

5.1 Introduction to FreeRADIUS

The developers of FreeRADIUS speak on their product and its development, from the FreeRADIUS web site:

FreeRADIUS is one of the most modular and featureful [sic] RADIUS servers available today. It has been written by
a team of developers who have more than a decade of collective experience in implementing and deploying RADIUS
software, in software engineering, and in Unix package management. The product is the result of synergy between
many of the best-known names in free software-based RADIUS implementations, including several developers of the
Debian GNU/Linux operating system, and is distributed under the GNU GPL (version 2).

FreeRADIUS is a complete rewrite, ground-up compilation of a RADIUS server. The configuration files exhibit
many similarities to the old Livingston RADIUS server. The product includes support for:

•

Limiting the maximum number of simultaneous logons, even on a per-user basis

•

More than one DEFAULT entry, with each being capable of "falling through" to the next

•

Permitting and denying access to users based on the huntgroup to which they are connected

•

Setting certain parameters to be huntgroup specific

•

Intelligent "hints" files that select authentication protocols based on the syntax of the username

•

Executing external programs upon successful login

•

Using the $INCLUDE filename format with configuration, users, and dictionary files

•

Vendor-specific attributes

•

Acting as a proxy RADIUS server

FreeRADIUS supports the following popular NAS equipment:

•

3Com/USR Hiper Arc Total Control

•

3Com/USR NetServer

•

3Com/USR TotalControl

•

Ascend Max 4000 family

•

Cisco Access Server family

•

Cistron PortSlave

•

Computone PowerRack

•

Cyclades PathRAS

•

Livingston PortMaster

•

Multitech CommPlete Server

•

Patton 2800 family

FreeRADIUS is available for a wide range of platforms, including Linux, FreeBSD, OpenBSD, OSF/Unix, and
Solaris. For the purposes of this book, I will focus on FreeRADIUS running under Linux. Also, as of this printing, a
stable Version 1.0 of the product had not been released. However, development of the server is very stable, careful,
and somewhat slow, so changes to the procedures mentioned are unlikely. In the event a procedure does change, it's
likely to be a relatively small modification. Always check the FreeRADIUS web site for up-to-date details.

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

5.2 Installing FreeRADIUS

At present, the FreeRADIUS team doesn't offer precompiled binaries. The best way to start off is to grab the latest
source code, compressed using tar and gzip, from the FreeRADIUS web site at http://www.freeradius.org. Once the
file is on your computer, execute the following command to uncompress the file:
 tar -zxvf freeradius.tar.gz

Next, you'll need to compile FreeRADIUS. Make sure your system at least has gcc, glibc, binutils, and gmake
installed before trying to compile. To begin compiling, change to the directory where your uncompressed source
code lies and execute ./configure from the command line. You can also run ./configure -flags and customize the
settings for the flags in Table 5-1.

Table 5-1. Optional configuration flags for FreeRADIUS

Flag

Purpose

Default

--enable-shared[=PKGS] Builds shared libraries.

Yes

--enable-static[=PKGS] Builds static libraries.

Yes

--enable-fast-install[=PKGS]

Optimizes the resulting files for
fastest installation.

Yes

--with-gnu-ld
Makes the procedure assume the C
compiler uses GNU lD.

No

--disable-libtool-lock
Avoids locking problems. This may
break parallel builds.

Not applicable

--with-logdir=DIR Specifies the directory for log files.

LOCALSTATEDIR/log

--with-radacctdir=DIR Specifies the directory for detail files.

LOGDIR/radacct

--with-raddbdir=DIR
Specifies the directory for
configuration files.

SYSCONFDIR/raddb

--with-dict-nocase
Makes the dictionary case
insensitive.

Yes

--with-ascend-binary
Includes support for attributes
provided with the Ascend binary
filter.

Yes

--with-threads
Uses threads if they're supported
and available.

Yes

--with-snmp
Compiles SNMP support into the
binaries.

Yes

--with-mysql-include-dir=DIR

Specifies where the include files for
MySQL can be found.

Not applicable

--with-mysql-lib-dur=DIR
Specifies where the dictionary files
for MySQL can be found.

Not applicable

--with-mysql-dir-DIR
Specifies where MySQL is installed
on the local system.

Not applicable

--disable-ltdl-install Does not install libltdl.

Not applicable

--with-static-modules=QUOTED

-MODULE-LIST
Compiles the list of modules
statically.

Not applicable

--enable-developer
Turns on extra developer warnings
in the compiler.

Not applicable

Commonly, the following locations are used when installing a RADIUS product (these practices go back to the
Cistron RADIUS server):
 Binaries

/usr/local/bin and /usr/local/sbin
 Manual (man) pages

/usr/local/man
 Configuration files

/etc/raddb
 Log files

/var/log and /var/log/radacct

To make the compiler use these locations automatically, execute:
 ./configure --localstatedir=/var --sysconfdir=/etc

The programs will then be configured to compile. The rest of this chapter will assume that you installed FreeRADIUS
in these locations.

Next, type make. This will compile the binaries. Finally, type make install. This will place all of the files in the
appropriate locations. It will also install configuration files if this server has not had a RADIUS server installed before.
Otherwise, the procedure will not overwrite your existing configuration and will report to you on what files it did not
install.

At this point, your base FreeRADIUS software is installed. Before you begin, though, you'll need to customize some
of the configuration files so that they point to machines and networks specific to your configuration. Most of these
files are located in /etc/raddb. The following files are contained by default:
 radius:/etc/raddb # ls -al
total 396
drwxr-xr-x 2 root root 4096 Apr 10 10:39 .
drwxr-xr-x 3 root root 4096 Apr 10 10:18 ..
-rw-r--r-- 1 root root 635 Apr 10 10:18 acct_users
-rw-r--r-- 1 root root 3431 Apr 10 10:18 attrs
-rw-r--r-- 1 root root 595 Apr 10 11:02 clients
-rw-r--r-- 1 root root 2235 Apr 10 10:39 clients.conf
-rw-r--r-- 1 root root 12041 Apr 10 10:18 dictionary
-rw-r--r-- 1 root root 10046 Apr 10 10:39 dictionary.acc
-rw-r--r-- 1 root root 1320 Apr 10 10:39 dictionary.aptis
-rw-r--r-- 1 root root 54018 Apr 10 10:39 dictionary.ascend
-rw-r--r-- 1 root root 11051 Apr 10 10:39 dictionary.bay
-rw-r--r-- 1 root root 4763 Apr 10 10:39 dictionary.cisco
-rw-r--r-- 1 root root 1575 Apr 10 10:39 dictionary.compat
-rw-r--r-- 1 root root 1576 Apr 10 10:39 dictionary.erx
-rw-r--r-- 1 root root 375 Apr 10 10:39 dictionary.foundry
-rw-r--r-- 1 root root 279 Apr 10 10:39 dictionary.freeradius
-rw-r--r-- 1 root root 2326 Apr 10 10:39 dictionary.livingston
-rw-r--r-- 1 root root 2396 Apr 10 10:39 dictionary.microsoft
-rw-r--r-- 1 root root 190 Apr 10 10:39 dictionary.nomadix
-rw-r--r-- 1 root root 1537 Apr 10 10:39 dictionary.quintum
-rw-r--r-- 1 root root 8563 Apr 10 10:39 dictionary.redback
-rw-r--r-- 1 root root 457 Apr 10 10:39 dictionary.shasta
-rw-r--r-- 1 root root 2958 Apr 10 10:39 dictionary.shiva
-rw-r--r-- 1 root root 1274 Apr 10 10:39 dictionary.tunnel
-rw-r--r-- 1 root root 63265 Apr 10 10:39 dictionary.usr
-rw-r--r-- 1 root root 2199 Apr 10 10:39 dictionary.versanet
-rw-r--r-- 1 root root 1767 Apr 10 10:18 hints
-rw-r--r-- 1 root root 1603 Apr 10 10:18 huntgroups
-rw-r--r-- 1 root root 2289 Apr 10 10:39 ldap.attrmap
-rw-r--r-- 1 root root 830 Apr 10 10:18 naslist
-rw-r--r-- 1 root root 856 Apr 10 10:18 naspasswd
-rw-r--r-- 1 root root 9533 Apr 10 10:39 postgresql.conf
-rw-r--r-- 1 root root 4607 Apr 10 10:39 proxy.conf
-rw-r--r-- 1 root root 27266 Apr 10 10:57 radiusd.conf
-rw-r--r-- 1 root root 27232 Apr 10 10:39 radiusd.conf.in
-rw-r--r-- 1 root root 1175 Apr 10 10:18 realms
-rw-r--r-- 1 root root 1405 Apr 10 10:39 snmp.conf
-rw-r--r-- 1 root root 9089 Apr 10 10:39 sql.conf
-rw-r--r-- 1 root root 6941 Apr 10 10:18 users
-rw-r--r-- 1 root root 6702 Apr 10 10:39 x99.conf

-rw-r--r-- 1 root root 3918 Apr 10 10:39 x99passwd.sample
5.2.1 The clients File

First, take a look at the /etc/raddb/clients file. This file lists the hosts authorized to hit the FreeRADIUS server with
requests and the secret key those hosts will use in their requests. Some common entries are already included in the
/etc/raddb/clients file, so you may wish to simply uncomment the appropriate lines. Make sure the secret key that is
listed in the clients file is the same as that programmed into your RADIUS client equipment. Also, add the IP
address of a desktop console machine with which you can test your setup using a RADIUS ping utility. A sample
clients file looks like this:
 # Client Name Key
#---------------- ----------
#portmaster1.isp.com testing123
#portmaster2.isp.com testing123
#proxyradius.isp2.com TheirKey
localhost testing123
192.168.1.100 testing123

tc-clt.hasselltech.net oreilly

It's recommended by the FreeRADIUS developers that users move from the clients file to
the clients.conf file. The clients.conf file will be addressed later in Chapter 6, but for the
sake of simplicity and startup testing, I will continue using the plain clients file in this
introduction.

While it may seem obvious, change the shared secrets from the defaults in the file or the samples listed previously.
Failing to do so presents a significant security risk to your implementation and network.

5.2.2 The naslist File

Next, open the /etc/raddb/naslist file. Inside this file, you should list the full canonical name of every NAS that will hit
this server, its nickname, and the type of NAS. For your test console, you can simply use the "portslave" type. Table
5-2 lists the FreeRADIUS-supported NAS equipment and the type identifier needed for the naslist file.

Table 5-2. Supported NAS equipment and its type identifier

NAS equipment

Type identifier

3Com/USR Hiper Arc Total Control

usrhiper

3Com/USR NetServer

netserver

3Com/USR TotalControl

tc

Ascend Max 4000 family

max40xx

Cisco Access Server family

cisco

Cistron PortSlave

portslave

Computone PowerRack

computone

Cyclades PathRAS

pathras

Livingston PortMaster

livingston

Multitech CommPlete Server

multitech

Patton 2800 family

patton

A sample /etc/raddb/naslist file looks like this:
 # NAS Name Short Name Type
#---------------- ---------- ----
#portmaster1.isp.com pm1.NY livingston
localhost local portslave
192.168.1.100 local portslave

tc-clt.hasselltech.net tc.char tc
5.2.3 The naspasswd File

If you have 3Com/USR Total Control, NetServer, or Cyclades PathRAS equipment, you may need to edit the
/etc/raddb/naspasswd file. This lets the checkrad utility log onto your NAS machine and check to see who is logged
on at what port—which is commonly used to detect multiple logins. Normally, the SNMP protocol can do this, but
the equipment listed previously needs a helping hand from the checkrad utility. A sample /etc/raddb/naspasswd file
looks like this:
 206.229.254.15 !root JoNAThaNHasSELl
206.229.254.5 !root FoOBaR
5.2.4 The hints File

Progressing along with the FreeRADIUS setup you will come to the /etc/raddb/hints file. This file can be used to
provide "hints" to the RADIUS server about how to provision services for a specific user based on how his login
name is constructed. For example, when you've configured your default service to be a SLIP connection, then a
SLIP connection will be set up if a user logs in with her standard username (e.g., meis). However, if that same user
wanted a PPP connection, she could alter her username to be Prneis, and the RADIUS server (knowing about that
convention from the /etc/raddb/hints file) would set up a PPP connection for her. Suffixes on the end of the
username work in the same way. More on the hints file will be provided later in the chapter. You shouldn't need to
edit this file initially since we're just testing, but if you'd like to check it out, a sample /etc/raddb/hints file looks like
this:
 DEFAULT Prefix = "P", Strip-User-Name = Yes
 Hint = "PPP",
 Service-Type = Framed-User,
 Framed-Protocol = PPP

DEFAULT Prefix = "S", Strip-User-Name = Yes
 Hint = "SLIP",
 Service-Type = Framed-User,
 Framed-Protocol = SLIP

DEFAULT Suffix = "P", Strip-User-Name = Yes
 Hint = "PPP",
 Service-Type = Framed-User,
 Framed-Protocol = PPP

DEFAULT Suffix = "S", Strip-User-Name = Yes
 Hint = "SLIP",
 Service-Type = Framed-User,

 Framed-Protocol = SLIP
5.2.5 The huntgroups File

Let's move on to the /etc/raddb/huntgroups file, where you define certain huntgroups. Huntgroups are sets of ports
or other communication outlets on RADIUS client equipment. In the case of FreeRADIUS, a huntgroup can be a set
of ports, a specific piece of RADIUS client equipment, or a set of calling station IDs that you want to separate from
other ports.

You can filter these defined huntgroups to restrict their access to certain users and groups and match a
username/password to a specific huntgroup, possibly to assign a static IP address. You define huntgroups based on
the IP address of the NAS and a port range. (Keep in mind that a range can be anywhere from 1 to the maximum
number of ports you have.) To configure this file, you first specify the terminal servers in each POP. Then, you
configure a stanza that defines the restriction and the criteria that a potential user must satisfy to pass the restriction.
That criteria is most likely a Unix username or groupname.

Again, you shouldn't have to configure this file to get basic functionality enabled for testing; if you would like to peruse
the file and its features, however, I've provided a sample /etc/raddb/huntgroups file. It's for an ISP with a POP in
Raleigh, North Carolina that wants to restrict the first five ports on its second of three terminal servers in that POP to
only premium customers:
 raleigh NAS-IP-Address == 192.168.1.101
raleigh NAS-IP-Address == 192.168.1.102
raleigh NAS-IP-Address == 192.168.1.103
premium NAS-IP-Address == 192.168.1.101, NAS-Port-Id == 0-4
 Group = premium,

 Group = staff
5.2.6 The users File

FreeRADIUS allows several modifications to the original RADIUS server's style of treating users unknown to the
users file. In the past, if a user wasn't configured in the users file, the server would look in the Unix password file,
and then deny him access if he didn't have an account on the machine. There was only one default entry permitted. In
contrast, FreeRADIUS allows multiple default entries and can "fall through" each of them to find an optimal match.
The entries are processed in the order they appear in the users file, and once a match is found, RADIUS stops
processing it. The Fall-Through = Yes attribute can be set to instruct the server to keep processing, even upon a
match. The new FreeRADIUS users file can also accept spaces in the username attributes, either by escaping the
space with a backslash (\) or putting the entire username inside quotation marks. Additionally, FreeRADIUS will not
strip out spaces in usernames received from PortMaster equipment.

Since we won't add any users to the users file for our testing purposes, FreeRADIUS will fall back to accounts
configured locally on the Unix machine. However, if you want to add a user to the users file to test that functionality,
a sample /etc/raddb/users file looks like this:
 steve Auth-Type := Local, User-Password == "testing"
 Service-Type = Framed-User,
 Framed-Protocol = PPP,
 Framed-IP-Address = 172.16.3.33,
 Framed-IP-Netmask = 255.255.255.0,
 Framed-Routing = Broadcast-Listen,
 Framed-Filter-Id = "std.ppp",
 Framed-MTU = 1500,
 Framed-Compression = Van-Jacobsen-TCP-IP
DEFAULT Service-Type == Framed-User
 Framed-IP-Address = 255.255.255.254,
 Framed-MTU = 576,
 Service-Type = Framed-User,
 Fall-Through = Yes
DEFAULT Framed-Protocol == PPP
 Framed-Protocol = PPP,

 Framed-Compression = Van-Jacobson-TCP-IP

There will be much more about the users file later in this chapter.

5.2.7 The radiusd.conf File

This file is much like Apache's httpd.conf file in that it lists nearly every directive and option for the basic functionality
of the FreeRADIUS product. You will need to edit the Unix section of this file to make sure that the locations of the
passwd, shadow, and group files are not commented out and are correct. FreeRADIUS needs these locations to
start up. The appropriate section looks like this:
 unix {
 (some content removed)
 # Define the locations of the normal passwd, shadow, and
 # group files.
 #
 # 'shadow' is commented out by default, because not all
 # systems have shadow passwords.
 #
 # To force the module to use the system passwd fnctns,
 # instead of reading the files, comment out the 'passwd'
 # and 'shadow' configuration entries. This is required
 # for some systems, like FreeBSD.
 #
 passwd = /etc/passwd
 shadow = /etc/shadow
 group = /etc/group
 (some content removed)

}

I will cover the radiusd.conf file in more detail later in this chapter.

With that done, it's now time to launch the radiusd daemon and test your setup. Execute radiusd from the command
line; it should look similar to this:
 radius:/etc/raddb # radiusd
radiusd: Starting - reading configuration files ...

radius:/etc/raddb #

If you receive no error messages, you now have a functional FreeRADIUS server. Congratulations!

5.2.8 Testing the Initial Setup

Once you have FreeRADIUS running, you need to test the configuration to make sure it is responding to requests.
FreeRADIUS starts up listening, by default, on the port specified either in the local /etc/services file or in the port
directive in radiusd.conf. While RFC 2138 defines the standard RADIUS port to be 1812, historically RADIUS
client equipment has used port 1645. Communicating via two different ports is obviously troublesome, so many users
start the FreeRADIUS daemon with the -p flag, which overrides the setting in both the /etc/services file and anything
set in radiusd.conf. To do this, run the following from the command line:
 radius:/etc/raddb # radiusd -p 1645
radiusd: Starting - reading configuration files ...

radius:/etc/raddb #

The server is now running; it is listening for and accepting requests on port 1645.

So, what is an easy way to test your configuration to see if it functions properly? It's easier than you might think, in
fact. MasterSoft, Inc. has released a Windows desktop RADIUS server testing tool called NTRadPing, available at
http://www.dialways.com. The latest version as of this writing is 1.2, and it's a freeware tool. Download and install
this utility on a Windows machine, and then run it. The initial application window should look much like Figure 5-1.

Figure 5-1. The NTRadPing 1.2 application window

To do a quick test, follow these steps:

1.

Enter the IP address of your FreeRADIUS machine in the RADIUS Server/port box, and then the port
number in the adjacent box. For this example, I've used IP address 192.168.1.103 and port 1645.

2.

Type in the secret key you added in /etc/raddb/clients for this Windows console machine. For this example,
I used the key "testing123."

3.

In the User-Name field, enter root, and in the Password field, enter the root password for your
FreeRADIUS machine.

4.

Select Authentication Request from the Request Type drop-down list box.

5.

Click Send.

If your server is working properly, and you entered a valid root password, you should see the reply in the RADIUS
Server reply box to the right of the NTRadPing window. You should see something like:
 Sending authentication request to server 192.168.1.103:1645
Transmitting packet, code=1 id=1 length=47
Received response from the server in 15 milliseconds
Reply packet code=2 id=1 length=20
Response: Access-Accept

------------------attribute dump----------------------

Now, change the password for root inside NTRadPing to something incorrect, and resend the request. You should
get an Access-Reject message much like the one shown here:
 Sending authentication request to server 192.168.1.103:1645
Transmitting packet, code=1 id=3 length=47
No response from server (timed out), new attempt (#1)
Received response from the server in 3516 milliseconds
Reply packet code=3 id=3 length=20
Response: Access-Reject

------------------attribute dump----------------------

Next, you'll need to test accounting packets. The old standard for RADIUS accounting used port 1646. Change the
port number in NTRadPing accordingly, and select Accounting Start from the Request Type drop-down list box.
Make sure the root password is correct again, and send your request along. The response should be similar to the
following:
 Sending authentication request to server 192.168.1.103:1646
Transmitting packet, code=4 id=5 length=38
Received response from the server in 15 milliseconds
Reply packet code=5 id=5 length=20
Response: Accounting-Response

------------------attribute dump----------------------

Finally, stop that accounting process by changing the Request Type box selection to Accounting Stop and resending
the request. You should receive a response like this:
 Sending authentication request to server 192.168.1.103:1645
Transmitting packet, code=4 id=6 length=38
Received response from the server in 16 milliseconds
Reply packet code=5 id=6 length=20
Response: Accounting-Response

------------------attribute dump----------------------

If you received successful responses to all four ping tests, then FreeRADIUS is working properly. If you haven't,
here's a quick list of things to check:

•

Is FreeRADIUS running? Use
ps -aux | grep radiusd

to determine whether the process is active or not.

•

Is FreeRADIUS listening on the port you're pinging? If necessary, start radiusd with an explicit port, i.e.,
radiusd -p 1645

•

Have you added your Windows console machine to the list of authorized clients that can hit the RADIUS
server? Do this in the /etc/raddb/clients file.

•

Are you using the correct secret key? This as well is configured in the /etc/raddb/clients file.

•

Have you double-checked the locations of the group, passwd, and shadow files inside the radiusd.conf
file? These locations are specified in the Unix section. Make sure they're not commented out and that the
locations are correct.

•

Can FreeRADIUS read the group, passwd, and shadow files? If you're running FreeRADIUS as root, this
shouldn't be a problem, but check the permissions on these files to make sure the user/group combination
under which radiusd is running can access those files.

•

Is there any port filtering or firewalling between your console machine and the RADIUS server that is
blocking communications on the ping port?

•

Is the daemon taking a long time to actually start up and print a ready message (if you're running in debugging
mode)? If so, your DNS configuration is broken.

To assist in diagnosing your problem, you may want to try running the server in debugging mode. While operating in
this mode, FreeRADIUS outputs just about everything it does, and by simply sifting through all of the messages it
prints while running, you can identify most problems.

To run the server in debugging mode, enter the following on the command line to start radiusd:
 radiusd -sfxxyz -l stdout

It should respond with a ready message if all is well. If it doesn't, then look at the error (or errors as the case may be)
and run through the checklist above.

You can also check the configuration of FreeRADIUS using the following command:
 radiusd -c

This command checks the configuration of the RADIUS server and alerts you to any syntax errors in the files. It
prints the status and exits with either a zero, if everything is correct, or a one if errors were present. This command is
also useful when you're updating a production server that cannot be down: if there were a syntax error in the files,
radiusd would fail to load correctly, and downtime would obviously ensue. With the check capability, this situation
can be avoided.

This document is created with the unregistered version of CHM2PDF Pilot

http://www.freeradius.org/default.htm
http://www.dialways.com/default.htm

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

5.3 In-depth Configuration

At this point, you've compiled, installed, configured, started, and tested a simple FreeRADIUS implementation that is
functional. However, 99.5% of the RADIUS/AAA implementations around the world are just not that simple. In this
section, I'll delve into the two major configuration files and discuss how to tweak, tune, customize, and effect change
to the default FreeRADIUS installation. In Chapter 6, I'll discuss advanced topics, such as pluggable authentication
module (PAM) support, integration with MySQL, LDAP usage, and other topics.

5.3.1 Configuring radiusd.conf

radiusd.conf file is the central location to configure most aspects of the FreeRADIUS product. It includes
configuration directives as well as pointers and two other configuration files that may be located elsewhere on the
machine. There are also general configuration options for the multitude of modules available now and in the future for
FreeRADIUS. The modules can request generic options, and FreeRADIUS will pass those defined options to the
module through its API.

Before we begin, some explanation is needed of the operators used in the statements and directives found in these
configuration files. The = operator, as you might imagine, sets the value of an attribute. The := operator sets the value
of an attribute and overwrites any previous value that was set for that attribute. The == operator compares a state
with a set value. It's critical to understand how these operators work in order to obtain your desired configuration.

In this chapter, I'll look at several of the general configuration options inside radiusd.conf. Some of the more
advanced directives in this file will be covered in Chapter 6.

pidfile

This file contains the process identification number for the radiusd daemon. You can use this file from the command
line to perform any action to a running instance of FreeRADIUS. For example, to shut FreeRADIUS down without
any protests, issue:
 kill -9 `cat /var/run/radiusd.pid'
Usage:
 pidfile = [path]

Suggestion:
 pidfile = ${run_dir}/radiusd.pid

user and group

These options dictate under what user and group radiusd runs. It is not prudent to allow FreeRADIUS to run under
a user and group with excessive permissions. In fact, to minimize the permissions granted to FreeRADIUS, use the
user and group "nobody." However, on systems configured to use shadow passwords, you may need to set the user
to "nobody" and the group to "shadow" so that radiusd can read the shadow file. This is not a desirable idea. On
some systems, you may need to set both the user and group to "root," although it's clear why that is an even worse
idea.

Usage:
 user = [username]; group = [groupname]

Suggestion:
 user = nobody; group = nobody

max_request_time

This option specifies the maximum number of seconds a request will be processed by FreeRADIUS. If the handling
of a request takes longer than this threshold, the process can be killed off and an Access-Reject message returned.
This value can range from 5 to 120 seconds.

Usage:
 max_request_time = 30

Suggestion:
 max_request_time = 60

delete_blocked_requests

This directive is paired with the max_request_time directive in that it controls when requests that exceed the time
threshold should be killed. Most of the time, this value should be set to "no."

Usage:
 delete_blocked_requests = [yes/no]

Suggestion:
 delete_blocked_requests = no

cleanup_delay

When FreeRADIUS sends a reply to RADIUS client equipment, it generally caches that request internally for a few
seconds to ensure that the RADIUS client will receive the message (sometimes network problems, offline servers,
and large traffic loads might prevent the client from picking up the packet). The client receives a quick reply on its
prompting for a second copy of the packet, since the internal cache mechanism for FreeRADIUS is much quicker
than processing the request again. This value should be set between 2 and 10: this range is the happy medium
between treating every request as a new request and caching so many processed requests that some new requests
are turned away.

Usage:
 cleanup_delay = [value]

Suggestion:
 cleanup_delay = 6

max_requests

This directive specifies the maximum number of requests FreeRADIUS will keep tabs on during operation. The value
starts at 256 and scales with no upper limit, and ideally this is set at the number of RADIUS clients you have
multiplied by 256. Setting this value too high causes the server to eat up more system memory, while setting it too low
causes a delay in processing new requests once this threshold has been met. New requests must wait for the cleanup
delay period to finish before they can be serviced.

Usage:
 max_requests = [value]

Suggestion:
 max_requests = [256 * x number of clients]

bind_address

This directive specifies the address under which radiusd will accept requests and reply to them. The "address" can
be an IP address, fully qualified domain name, or the * wildcard character (to instruct the daemon to listen on all
interfaces).

Usage:
 bind_address = [value]

Suggestion:
 bind_address = *

port

This setting instructs FreeRADIUS to listen on a specific port. While the RADIUS RFC specifies that the official
RADIUS port is 1812, historically NAS equipment and some RADIUS servers have used port 1645. You should be
aware of the port your implementation uses. While you can specify a certain port here, you can also instruct radiusd
to use the machine's /etc/services file to find the port to use. Additionally, using the -p switch when executing radiusd
will override any port setting provided here.

Usage:
 port = [value]

Suggestion:
 port = 1645

hostname_lookups

This directive tells FreeRADIUS whether to look up the canonical names of the requesting clients or simply log their
IP address and move on. Much like with Apache, DNS queries take a long time and, especially on highly loaded
servers, can be a detriment to performance. Turning this option on also causes radiusd to block the request for 30
seconds while it determines the CNAME associates with that IP address. Only turn this option on if you are sure you
need it.

Usage:
 hostname_lookups = [yes/no]

Suggestion:
 hostname_lookups = no

allow_core_dumps

This directive determines whether FreeRADIUS should dump to core when it encounters an error or simply silently
quit with the error. Only enable this option if you're developing for FreeRADIUS or attempting to debug a problem
with the code.

Usage:
 allow_core_dumps = [yes/no]

Suggestion:
 allow_core_dumps = no

regular and extended expressions

This set of controls configures regular and extended expression support. Realistically, you shouldn't need to alter
these as they're set when running the ./configure command upon initial install.

Usage:
 regular_expressions = [yes/no]; extended_expressions = [yes/no]

Suggestion:
 regular_expressions = yes; extended expressions = yes

log

These directives control how access to and requests of the FreeRADIUS server are logged. The
log_stripped_names control instructs FreeRADIUS whether to include the full User-Name attribute as it appeared in
the packet. The log_auth directive specifies whether to log authentication requests or simply carry them out without
logging. The log_auth_badpass control, when set to yes, causes radiusd to log the bad password that was
attempted, while the log_auth_goodpass logs the password if it's correct.

Usage:
 log_stripped_names = [yes/no]; log_auth = [yes/no];
log_auth_badpass = [yes/no]; log_auth_goodpass = [yes/no]
Suggestion:
 log_stripped_names = no; log_auth = yes;
log_auth_badpass = yes; log_auth_goodpass = no

lower_user and lower_pass

To eliminate case problems that often plague authentication methods such as RADIUS, the FreeRADIUS developers
have included a feature that will attempt to modify the User-Name and User-Password attributes to make them all
lowercase; this is done either before an authentication request, after a failed authentication request using the values of
the attributes as they came, or not at all.

Clearly setting the lower_user directive to after makes the most sense: it adds processing time to each request, but
unless this particular machine normally carries a high load, the reduced troubleshooting time is worth the extra
performance cost. However, a secure password often makes use of a combination of uppercase and lowercase
letters, so security dictates leaving the password attribute alone.

Usage:
 lower_user = [before/after/no]; lower_pass = [before/after/no]

Suggestion:
 lower_user = after; lower_pass = no

nospace_user and nospace_pass

Much like the lower_user and lower_pass controls, these directives preprocess an Access-Request packet and
ensure that no spaces are included. The available options are the same: before, after, or no. Again, the most obvious
choice is to set nospace_user to after to save helpdesk time. Some administrators have a tendency to not allow
spaces in passwords; if this is the case, set nospace_pass to before (since there is a system-wide policy against
spaces in passwords, testing a request as-is is not required).

Usage:
 nospace_user = [before/after/no]; nospace_password = [before/after/no]

Suggestion:
 nospace_user = after; nospace_password = before

5.3.2 Configuring the users File

The users file, located at /etc/raddb/users, is the home of all authentication security information for each user
configured to access the system. Each user has an individual stanza, or entry. The file has a standard format for each
stanza:

1.

The first field is the username for each user, up to 253 characters.

2.

On the same line, the next criteria are a list of required authentication attributes such as protocol type,
password, and port number.

3.

Following the first line, each user has a set of defined characteristics that allow FreeRADIUS to provision a
service best for that user. These characteristics are indented under the first line and separated into one
characteristic per line. For example, you might find a Login-Host entry, a dial-back configuration, or perhaps
PPP configuration information.

The users file also comes with a default username of—you guessed it—DEFAULT, which is generally the catchall
configuration. That is to say, if there is no explicit match for a particular user, or perhaps the attribute information for
a user is incomplete, radiusd will configure the session based on the information in the DEFAULT entry.

FreeRADIUS processes this file in the order in which the entries are listed. When information received from the
RADIUS client equipment matches an entry in the users file, FreeRADIUS stops processing and sets the service up
based on that users file entry. However, you can alter this behavior by setting the Fall-Through attribute to yes in an
entry. When radiusd encounters a positive fall-through entry, it will continue processing the users file and then select
the best match for the particular session. The DEFAULT user can also have a Fall-Through attribute, which means
you can have multiple DEFAULT entries for various connection scenarios.

If you don't want to issue a password for each user via their entry in the users file, then simply set Auth-Type :=
System on the first line for each user. FreeRADIUS will then query the system password database for the correct
password, which saves some administrative headache.

5.3.2.1 A sample complete entry

The following is a complete entry for the user jhassell, dialing into a NAS server using PPP. Note that (a) there is no
Fall-Through attribute set, so FreeRADIUS will stop processing when it encounters this entry, and (b) no DEFAULT
entry will be used to add attribute information to this connection:
 jhassell Auth-Type := System
 Service-Type = Framed-User,
 Framed-Protocol = PPP,
 Framed-IP-Address = 192.168.1.152,
 Framed-IP-Netmask = 255.255.255.0,
 Framed-Routing = Broadcast-Listen,
 Framed-Filter-Id = "20modun",
 Framed-MTU = 1500,

 Framed-Compression = Van-Jacobsen-TCP-IP

Next, here's a complete entry for the user Anna Watson. She has a space in her user-name and she also has a
password specified in her entry. She also gets a positive fall-through so that she can use some of the DEFAULT
user's attributes with her connection:
 "Anna Watson" Auth-Type := Local, User-Password == "yes123"
 Reply-Message = "Hello, %u"
 Service-Type = Framed-User,
 Framed-Routing = Broadcast-Listen,
 Framed-Filter-Id = "20modun",

 Fall-Through = Yes
5.3.2.2 DEFAULT entries

These DEFAULT user configurations match with all usernames that can get to them (i.e., the individual users must
have a positive Fall-Through attribute). Recall from the earlier discussion that DEFAULT entries may also have
Fall-Through attributes.

First, let's make sure that all users are checked against the system password file unless they have a password
explicitly assigned in the entry.
 DEFAULT Auth-Type := System
 Fall-Through = Yes

Now, include a DEFAULT entry for all users connecting via a framed protocol, such as PPP or SLIP. Note that I
tell the RADIUS client to assign the IP address via the Framed-IP-Address attribute's value (see Chapter 3 for
details).
 DEFAULT Service-Type = Framed-User
 Framed-IP-Address = 255.255.255.254,
 Framed-MTU = 576,
 Service-Type = Framed-User,

 Fall-Through = Yes

Finally, set the DEFAULT entry for PPP users. I've already told FreeRADIUS to assign framed protocol users with
a dynamic IP address, so all I need to do is set the compression method and explicitly designate PPP as the framed
protocol for this default.
 DEFAULT Framed-Protocol == PPP
 Framed-Protocol = PPP,

 Framed-Compression = Van-Jacobsen-TCP-IP

If a user attempts to connect and matches neither any of the explicit user entries nor any of the DEFAULT entries,
then he will be denied access. Notice that with the last DEFAULT entry, Fall-Through isn't set: this ensures the user
is kicked off if he doesn't match any of the scenarios.

5.3.2.3 Prefixes and suffixes

You can use prefixes and suffixes appended to the user name to determine what kind of service to provision for that
particular connection. For example, if a user adds .shell to their username, you add the following DEFAULT entry to
the users file to provision a shell service for her. FreeRADIUS authenticates her against the system password file,
telnets to your shell account machine, and logs her in.
 DEFAULT Suffix == ".shell", Auth-Type := System
 Service-Type = Login-User,
 Login-Service = Telnet,

 Login-IP-Host = shellacct1.rduinternet.com

Similarly, you can set up an entry in the users file where if a user connects with a prefix of "s.", then you can provision
SLIP service for him. FreeRADIUS can authenticate him against the system passwords, and then fall through to pick
up the SLIP attributes from another DEFAULT entry. Here is an example:
 DEFAULT Prefix == "s.", Auth-Type := System
 Service-Type = Framed-User,
 Framed-Protocol = SLIP,

 Fall-Through = Yes
5.3.2.4 Using RADIUS callback

The callback feature of the RADIUS protocol is one of the most interesting and useful security measures that you, as
an administrator, can enforce. You can configure FreeRADIUS to call a specific user back via his individual entry in
the users file. (Of course, you could make a DEFAULT entry that calls every user back, but the application of that
technique is more limited and requires many more resources than a standard implementation.) The following is an
example of a callback configuration for user rneis: she dials in, is then called back, is authenticated, and then given a
session on the shell account machine.
 rneis Auth-Type := System
 Service-Type = Callback-Login-User,
 Login-Service = Telnet,
 Login-IP-Host = shellacct1.rduinternet.com,

 Callback-Number = "9,1-919-555-1212"
5.3.2.5 Completely denying access to users

You can set up a specific user entry to deny access to him. For example, you may have an automated script that
takes input from your billing system (a list of usernames that have not paid their bills, possibly) and re-writes user
entries to deny access. They would write something like the following, for the user aslyter:
 aslyter Auth-Type := Reject
 Reply-Message = "Account disabled for nonpayment."

Alternatively, you could also set up a group on your system called "suspended," and FreeRADIUS could detect
whether an individual username was contained within that group and reject access as necessary. To do this, create a
DEFAULT entry much like the following:
 DEFAULT Group == "suspended", Auth-Type := Reject
 Reply-Message = "Account suspended for late payment."

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

5.4 Troubleshooting Common Problems

In this section, I'll take a look at some of the most frequently occurring problems with a new FreeRADIUS setup and
how to fix them.

5.4.1 Linking Errors When Starting FreeRADIUS

If you receive an error similar to the following:
 Module: Loaded SQL
rlm_sql: Could not link driver rlm_sql_mysql: file not found
rlm_sql: Make sure it (and all its depend libraries!) are in the search path

radiusd.conf[50]: sql: Module instantiation failed.

It means that some shared libraries on the server are not available. There are a couple of possible causes from this.

First, the libraries that are needed by the module listed in the error messages couldn't be found when FreeRADIUS
was being compiled. However, if a static version of the module was available, it was built at compile time. This would
have been indicated with very prominent messages at compile time.

The other cause is that the dynamic linker on your server is not configured correctly. This would result in the libraries
that are required being found at compile time, but not run time. FreeRADIUS makes use of standard calls to link to
these shared libraries, so if these calls fail, the system is misconfigured. This can be fixed by telling the linker where
these libraries are on your system, which can be done in one of the following ways:

•

Write a script that starts FreeRADIUS and includes the variable LD_LIBRARY_PATH. This sets the paths
where these libraries can be found.

•

If your system allows it, edit the /etc/ld.so.conf file and add the directory containing the shared libraries to the
list.

•

Set the path to these libraries inside radiusd.conf using the libdir configuration directive. The radiusd.conf file
has more details on this.

5.4.2 Incoming Request Passwords Are Gibberish

Gibberish is usually indicative of an incorrectly formed or mismatched shared secret, the phrase shared between the
server and the RADIUS client machine and used to perform secure encryption on packets. To identify the problem,
run the server in debugging mode, as described previously. The first password printed to the console screen will be
inside a RADIUS attribute (e.g., Password = "rneis\dfkjdf7482odf") and the second will be in a logged message
(e.g., Login failed [rneis/dfkjdf7482odf]). If the data after the slash is gibberish—ensure it's not just a really secure
password—then the shared secret is not consistent between the server and the RADIUS client. This may even be
due to hidden characters, so to be completely sure both are the same, delete and re-enter the secret on both
machines.

The gibberish may also result from a shared secret that is too long. FreeRADIUS limits the secret length to 16
characters, since some NAS equipment has limitations on the length of the secret yet don't make it evident in error
logs or the documentation.

5.4.3 NAS Machine Ignores a RADIUS Reply

You may be seeing duplicate accounting or authentication requests without accompanying successful user logins. In
this case, it's likely that you have a multi-homed RADIUS server, or at least a server with multiple IP addresses. If
the server receives a request on one IP address, but responds with a different one, even if the reply comes from the
machine for which the original packet was destined, the NAS machine will not accept it. To rectify this, launch
FreeRADIUS with the -i command-line switch, which binds the daemon to one specific IP address.

5.4.4 CHAP Authentication Doesn't Work Correctly

If PAP authentication works normally, but users authenticating with the CHAP protocol receive errors and denials,
you do not have plain text passwords in the users file. CHAP requires this, while PAP can take passwords from the
system or from any other source. For each user who needs CHAP authentication, you must add the Password =
changeme check item to his individual entry, of course changing the value of the password as appropriate.

Some people may say using CHAP is much more secure, since the user passwords are not transmitted in plain text
over the connection between the user and the NAS. This is simply not true in practice. While hiding the password
during transmission is beneficial, the CHAP protocol requires you to leave plain text passwords sitting in a file on a
server, completely unencrypted. Obviously, it's much more likely that a cracker will gain access to your RADIUS
server, grab the users file with all of these plainly available passwords, and wreak havoc and harm on your network
than it is that the same cracker would intercept one user's password during the establishment of the connection.

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

Chapter 6. Advanced FreeRADIUS

Congratulations! Chances are that, by now, you have a base FreeRADIUS system up, running, and tested to be
working correctly. But it's probably not an optimal system for your implementation and needs. In this chapter, I'll take
a look at some of the more advanced tools and methods you can use to extend the capabilities of FreeRADIUS and
better integrate it with your existing environment.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

6.1 Using PAM

FreeRADIUS supports the pluggable authentication model, or PAM, but that must be enabled at compile time. (A
discussion of PAM is beyond the scope of this book; however, an excellent introduction to PAM, with answers to
some frequently asked questions, is available at http://www.kernel.org/pub/linux/libs/pam/FAQ.) However, the
current support for PAM is rather non-standard. In most RADIUS distributions, to enable PAM in transactions,
enter User-Password = PAM in the users file; this is not supported in FreeRADIUS. You must instead use
Auth-Type = Pam. For example, here is a configuration stanza for a non-specific (that is to say, default) user
configured for PAM authentication, when he logs in from a specific RADIUS client machine:
 DEFAULT Auth-Type := Pam, NAS-IP-Address == 206.229.254.5
 Service-Type = Framed-User,
 Framed-Protocol = PPP,
 Framed-IP-Address = 255.255.255.254,
 Filter-Id = "20modun",
 Framed-MTU = 1500,

 Framed-Compression = Van-Jacobson-TCP-IP

In some configurations, you may have specific entries configured in the /etc/pam.d file. The following users file
configuration stanza uses a unique "Pam-Auth = x" identifier to direct the RADIUS server to a specific pam.d entry.
FreeRADIUS defaults this string to RADIUS:
 DEFAULT Auth-Type := Pam, Pam-Auth == "hasselltech-radius", NAS-IP-Address == 127.0.0.1
 Service-Type = Framed-User,
 Framed-Protocol = PPP,
 Framed-IP-Address = 255.255.255.254,
 Filter-Id = "15intonly",
 Framed-MTU = 1500,

 Framed-Compression = Van-Jacobson-TCP-IP

Ensure that your compiler's settings are configured to enable PAM support when you first begin your FreeRADIUS
installation.

Open your radiusd.conf file and scroll to the modules section. Enable PAM functionality by examining the pam
section inside the modules divider. The value for the pam_auth string corresponds with a file in the /etc/pam.d
directory on your system. Enter a name here, and make a note of it, as shown in this example:
 pam {
 #
 # The name to use for PAM authentication.
 # PAM looks in /etc/pam.d/${pam_auth_name}
 # for its configuration. See 'redhat/radiusd-pam'
 # for a sample PAM configuration file.
 #
 # Note that any Pam-Auth attribute set in the 'users'
 # file overrides this one.
 #
 pam_auth = radiusd

}

In the same file, scroll down to the authentication section and make sure the pam line is not commented out:
 authenticate {
 pam
 unix
ldap
mschap
eap

}

Now, navigate to the /etc/pam.d directory on your system and create a file with the same name you specified in the
pam section inside radiusd.conf. (In the previous example, I used radiusd.) Insert the following lines into this new
file:
 #%PAM-1.0
auth required /lib/security/pam_unix_auth.so shadow md5 nullok
auth required /lib/security/pam_nologin.so
account required /lib/security/pam_unix_acct.so
password required /lib/security/pam_cracklib.so
password required /lib/security/pam_unix_passwd.so shadow md5 nullok use_authtok

session required /lib/security/pam_unix_session.so

You may wish to change some of these settings to suit your specific configuration, but those default strings will work
for most any implementation. Next, make sure that the group under which the radiusd process is running can read
the /etc/shadow file. Unless you're running as root, PAM won't be able to read the file otherwise and will
subsequently malfunction. You also need to specify the user and group with read permissions to /etc/shadow in the
radiusd.conf file.

This document is created with the unregistered version of CHM2PDF Pilot

http://www.kernel.org/pub/linux/libs/pam/FAQ

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

6.2 Proxying and Realms

FreeRADIUS can act as a proxy server that adheres to the RFC specifications. To use realms, a user will likely dial
in with a preferred syntax as discussed in Chapter 2: commonly, this is in the format of user@realm or realm/user.
To configure the proper syntax for your implementation, consult the realm module configuration section of the
radiusd.conf file (in the /etc/raddb directory).

Further realm configuration takes place in the /etc/raddb/proxy.conf file. There is also another file, /etc/raddb/realms
, but the developers of FreeRADIUS suggest using the more expandable and functional proxy.conf file for this
purpose. The proxy.conf file lists various settings and configuration directives for the proxy functionality, as well as a
realm configuration section in which you detail which realms belong to which authentication hosts. For example, for
the realm ralint, the following entry would be added to the proxy.conf file:
 realm ralint {
 type = radius
 authhost = radius.raleighinternet.com:1645
 accthost = radius.raleighinternet.com:1646
 secret = triangle
 nostrip

}

You can also configure local realms whose authentication requests are not proxied. In this case, you don't need to list
a secret in the configuration. For instance:
 realm durhamnet {
 type= radius
 authhost= LOCAL
 accthost= LOCAL

}

A NULL realm can be used for authentication requests without a realm specified. A NULL entry might look
something like this:
 realm NULL {
 type= radius
 authhost= radius.raleighinternet.com:1645
 accthost= radius.raleighinternet.com:1646
 secret= triangle

}

Finally, much like in the users file, there can be a DEFAULT entry that will apply to all other realms not explicitly
matched. Here is an example:
 realm DEFAULT {
 type= radius
 authhost= radlocal.corp.raleighinternet.com:1645
 accthost= radlocal.corp.raleighinternet.com:1646
 secret= iamnotamicrosoftmachine

}

There exist several more options with which you can configure proxying and realm functionality in the proxy.conf file.
Table 6-1 lists the options.

Table 6-1. Realm and proxy configuration options

Option

Description

nostrip
This instructs FreeRADIUS not to strip the realm prefix
or suffix before proxying a request. The default is to
strip the realm identifier.

hints

This tells radiusd to send the username to the remote
RADIUS server after the local hints file has been
processed. The default is to send the original
User-Name attribute unaltered.

notrealm
This option overrides the default action to proxy a user
who logs on with a User-Name attribute that matches a
defined realm.

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

6.3 Using the clients.conf File

In Chapter 5, I configured a very basic FreeRADIUS system using the plain-vanilla clients file. That file is
obsolesced by the more flexible clients.conf file. It's very simple to configure, however.

There are two types of entries in the clients.conf file: clients and NASes, or more generally, RADIUS client
equipment. Clients are standard requestors used in most authentication scenarios. In the case of a client entry, the
canonical name or IP address of the original source request will be matched to an entry in the clients.conf file, and
the secret will be compared to verify the integrity of the request. A NAS entry is used for all RADIUS client
equipment where it's actually a NAS or another type of client. The NAS entry changes the criteria by which request
information is compared to an entry: NAS entries use the NAS-IP-Address attribute in the original source request to
match the appropriate entry and then progress to the NAS-Ident attribute.

A sample complete clients.conf entry shown here:
 client 172.16.1.55 {
 secret = donttellanyone
 shortname = totalcontrol
 vendor = 3comusr
 type = tc
 login = !root
 password = changeme
nas 172.16.1.66 {
 secret = iamanas
 shortname = max6000
 vendor = lucent
 type = ascend
 login = !root

 password = changeme
[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

6.4 FreeRADIUS with Some NAS Gear

For a variety of reasons, vendors have been known to not adhere to RFC specifications. Often their products are
based on an early draft of a proposed specification, sometimes vendors fail to update their products to the revised
guidelines, and sometimes vendors simply choose to ignore the specification entirely. In any case, as an administrator
you must cope. Unfortunately, the concept of vendor-specific irregularities and peculiarities is not foreign to NAS
gear.

This section is designed to at least familiarize you with the vagaries of using some models of terminal server equipment
with FreeRADIUS. Wherever possible, I will offer a workaround, another option, or some other recommendation to
assist you in compensating for the problem.

6.4.1 Ascend Equipment

Traditionally, the attributes specific to Ascend terminal server gear are sent by FreeRADIUS as vendor-specific
attributes, as per the RADIUS RFC. However, the Ascend NAS equipment itself sends its own attributes (those that
are specific to the Ascend equipment) as regular, global space attributes, which, of course, causes problems with
other attributes as specified in the RFC. If you suffer from a problem related to Ascend's non-standard way of
dealing with its specific attributes, you will see invalid Message-Authenticator messages in your log files.

There are two options to fix this problem. The first is to enable support for vendor-specific attributes on the Ascend
equipment. There are different steps to follow depending on which model of terminal server you have. If your model
is the Max6000 or Max4000 series with the menu-style TAOS interface, follow these instructions:

1.

Go to Ethernet, select Mod Config, and then choose Auth.

2.

Find the Auth-Compat option at the bottom of the menu. Change this from its current setting, OLD, to VSA.

3.

Save the change to make it active.

If you have the Max TNT model or the Apex 8000 series with the command-line-driven TAOS system, execute the
following commands from a shell prompt.
 nas> read external-auth
nas> set rad-auth-client auth-radius-compat = vendor-specific
nas> set rad-acct-client acct-radius-compat = vendor-specific

nas> write

The other option is to perform the opposite change: enable the old attributes on the FreeRADIUS machine. This is a
bit easier to do, since all that is required is preceding the Ascend attributes with X- wherever they're found. For
example, the vendor-specific attribute Ascend-Data-Filter would become, in old-style attribute naming,
X-Ascend-Data-Filter. It's worth noting that some Cisco equipment has the capability to emulate Ascend NAS gear
with 100% compatibility, so consider whether you have mixed gear when choosing the option to rid yourself of the
Ascend integration problems.

6.4.2 Cisco Equipment

Cisco equipment runs the IOS software and, while it's become a common piece of equipment to find in an ISP, it
does have some quirks of its own. Let's take a look at a few.

If you are running IOS Version 12 (either the .0 or .1 releases), then set the following configuration commands:
 aaa new-model
 aaa authentication login default group radius local
 aaa authentication login localauth local
 aaa authentication ppp default if-needed group radius local
 aaa authorization exec default group radius local
 aaa authorization network default group radius local
 aaa accounting delay-start
 aaa accounting exec default start-stop group radius
 aaa accounting network default start-stop group radius

 aaa processes 6

If you are running IOS Version 11.1, then set the following configuration commands:
 aaa new-model
 aaa authentication ppp radppp if-needed radius
 aaa authorization network radius none
 aaa accounting network wait-start radius
 aaa accounting network wait radius

 radius-server timeout 3

This instructs the NAS to communicate with a RADIUS server and eliminates a lot of duplicate log entries. If you run
IOS Version 11.3, then add the following command to the previous list:
 aaa accounting update newinfo

This allows the IP address assigned to the user to be displayed upon running the radwho program (discussed earlier
in the chapter). By default, the default Accounting Start packet sent from the NAS doesn't include the new client's IP
address. This command tells IOS to send another packet that updates the accounting records with the client's IP
address when it is assigned.

Perhaps the most critical of these new settings is the aaa accounting delay-start attribute.
This directive tells the NAS equipment not to send the Accounting Start packet until the
client has received an IP address. This eliminates some of the lag problems found with IOS
Version 11 equipment and the need to send IP address updates (known as "alive" packets)
to the RADIUS server during the negotiation process. By using the configuration settings
above, the FreeRADIUS machine will authenticate all requests for Telnet sessions
automatically. To gain access to a terminal server itself that is running IOS 12, you need to
create an entry in the users file similar to this (you may change either the username or
password; they are not required to be as they are in this example):
 !superuserUser-Password == "ciscoios"
 Service-Type = NAS-Prompt-User

This will grant you access. You will still need to use your secret in conjunction with the
enable command to perform high-level configuration modification.

6.4.3 Nortel Equipment

All Nortel equipment using the Bay software with a revision prior to Version 18.0.2 must upgrade to at least that
version. There is a bug in the encoding of the secret passed between the RADIUS server, the NAS gear, and the
client: versions prior to the desired revision pass a secret that is encoded purely with MD5, while the RADIUS RFC
requires it differently. You will know if you have this problem if you have log file messages relating to invalid
Message-Authenticators.

6.4.4 3Com and US Robotics Equipment

You may see the following error entry in your log files if you use HiPerArc 4.1.11 equipment from 3Com/US
Robotics:
 Wed Jun 19 14:50:32 2002: Error: Accounting: logout: entry for NAS tc-if5 port 1 has
wrong ID

The software has a hard time telling FreeRADIUS about its port numbers. The manufacturer has updated firmware
available at http://totalservice.usr.com, which you should install immediately. If you're outside the United States, call
the Global Response Center at (800) 879489, and they'll assist you with the upgrade.

This document is created with the unregistered version of CHM2PDF Pilot

http://totalservice.usr.com/default.htm

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

6.5 Using MySQL with FreeRADIUS

Many FreeRADIUS users have been toying with interacting radiusd with MySQL, which is a wonderful open source
database product. Using a database allows the administrator to query data and produce reports after transactions are
complete using a standard language, SQL, which is supported across platforms. Also, a database allows users and
passwords to be kept in a central place, and other services can access it and make said database an extensible,
complete resource. Additionally, it's a centralized administration point, which reduces the administrative headache of
offering a service to the public. This section describes one possible setup to allow FreeRADIUS to authenticate
against a user database held inside MySQL.

By using MySQL, you put the contents of the users file inside the database, and instead of storing all of the user
information in one file, with separate stanzas for each user, the data will now exist in several different database tables.
This majorly improves speed and scalability and offers a modicum of flexibility, too.

First, download, compile, and install MySQL for your RADIUS machine. There are several web resources available
to assist you in doing this:

•

The MySQL web site (http://www.mysql.com) offers database downloads as well as API information,
graphical tools to manage the database, applications contributed by third parties, and complete
documentation for the core database product.

•

There is also a convenient Windows-based tool to manage a remote MySQL database called SQLion (
http://www.exxatools.com/SQLion.html) that will make it easy to create and populate tables. Of course, in
lieu of a desktop-based product, there is also the venerable Linux tool, phpMyAdmin (
http://www.phpwizard.net/projects/phpMyAdmin/), which can be used over the Web for much the same
purpose.

It is imperative that you have the mysql-devel package installed (with headers and libraries
included) before compiling and installing FreeRADIUS. If you don't, radiusd will not
compile with MySQL support properly.

To begin the rest, follow these steps:

1.

Download, compile, and install FreeRADIUS. This process is detailed in Chapter 5. Using MySQL in
conjunction with radiusd doesn't call for any special compile-time or install-time flags, so a vanilla installation
should function correctly.

2.

Configure the test RADIUS system, also as described in Chapter 5. You will want to add a user in the shell
(use the useradd command) to use for authentication purposes. The remainder of this section will assume you
created a user "radius" in the system that belongs to a group "radius."

3.

Test the setup using the NTRadPing utility, as described in Chapter 5.

Some users have noted that NTRadPing operates correctly using test authentication
requests and replies but completely ignores or malfunctions when sending accounting
packets of any type. This is because the accounting process needs the Acct-Session-Time
attribute to properly account for the packet. In NTRadPing, ensure you add that attribute
(with a value of 9999, perhaps) before sending the accounting stop and start packets.

At this point, your RADIUS setup should respond correctly to test requests. The authentication information is being
retrieved from and compared against data in text files. Now let's add MySQL to the fray.

Once MySQL is installed, create the schema for your user database. There exists within the standard FreeRADIUS
distribution a command script file that will easily create a SQL database and populate it with the necessary fields. Of
course, you can create your own database schema, but for the purposes of this tutorial, I'll assume that you've used
the schema creation script included with the FreeRADIUS distribution. You can find this script, db_mysql.sql, in the
{unpacked}/src/modules/rlm_sql/drivers/rlm_sql_mysql directory, where {unpacked} is the location in your file
system where the unpacked distribution files reside.

There are several ways to run this script. Perhaps the simplest way is to run the script locally on the RADIUS
machine from the shell using this command:
 mysql -u{root} -p{rootpass} radius < db_mysql.sql

where {root} is the root user or a specific username you've configured for the RADIUS/MySQL interaction, and
{rootpass} is that user's password. Make sure to leave off the curly braces; they are added only for clarification.
Also note that there is no space between the flag and the data. You can also use the database management tools
described earlier; to execute the SQL script, consult the individual product's documentation.

Next, instruct FreeRADIUS that you intend to use SQL for all RADIUS functions. Open /etc/raddb/radiusd.conf in
your favorite text editor and make the following changes:

1.

Add sql to the authorize section, between the suffix and files entries.

2.

In the accounting section, between unix and radutmp, add sql to the mix.

Example 6-1 and Example 6-2 illustrate what the final modifications to the radiusd.conf file should look like.

Example 6-1. The "authorize" section
 authorize {
 preprocess
counter
attr_filter
eap
 suffix
 sql
 files
mschap

}
Example 6-2. The "accounting" section
 accounting {
acct_unique
 detail
counter
 unix
 sql
 radutmp
sradutmp

}

Next, add the username and password you configured for the MySQL user database (if you've been following the
examples to the letter, I've simply used the root user) to /etc/raddb/sql.conf. You can leave the rest of the file alone
if you used the automated script to create the database schema. You may want to turn sqltrace on to see the various
communications between radiusd and MySQL. The following reflects these modifications to sql.conf:
 sql {

Database type
Current supported are: rlm_sql_mysql, rlm_sql_postgresql,
rlm_sql_iodbc, rlm_sql_oracle, rlm_sql_unixodbc
driver = "rlm_sql_mysql"

Connect info
server = "localhost"
login = "root"
password = "rootpass"

Database table configuration
radius_db = "radius"

If you want both stop and start records logged to the
same SQL table, leave this as is. If you want them in
different tables, put the start table in acct_table1
and stop table in acct_table2
acct_table1 = "radacct"
acct_table2 = "radacct"

authcheck_table = "radcheck"
authreply_table = "radreply"

groupcheck_table = "radgroupcheck"
groupreply_table = "radgroupreply"

usergroup_table = "usergroup"

Remove stale session if checkrad does not see a double login
deletestalesessions = yes

Print all SQL statements when in debug mode (-x)
sqltrace = yes

sqltracefile = ${logdir}/sqltrace.sql

Despite the previous example, avoid placing your root username and password in the file. I
included it above for the sake of simplicity while testing the configuration. Before moving a
new database into production, add a non-privileged account and use that login information
in this file.

The configuration is almost complete. For any testing of the new database setup to work, you need to add user
information so that there is data to authenticate against. Follow these steps to add some general user information with
which to test.

1.

In the usergroup table, create entries matching user account names to group names.

2.

In the radcheck table, create entries for each of the usernames you created in Step 1 and specify their
passwords in the Password attribute. You may leave the Op field empty.

3.

In the radreply table, match the usernames to the specific attributes to be returned when FreeRADIUS
replies to an authentication request.

4.

Finally, inside the radgroupreply, create replies to be matched when requests are made from users inside
certain groups. (This step is optional: I will continue with it in this example to demonstrate the functionality,
but for simple setups nothing is needed in this table for the database authentication to work properly.
Additionally, you may leave the Op field empty.)

Table 6-2, Table 6-3, Table 6-4, and Table 6-5 show some sample data for your new user database.

Table 6-2. Usergroup

ID

UserName

GroupName

1 Jhassell Dialin

2 Rneis Staticdial

3 Bgrossman Suspended

4 Awatson dialin

Table 6-3. Radcheck

ID

UserName

Attribute

Value

Op

1 Jhassell Password Changeme ==

2 Rneis Password Thewb ==

3 Bgrossman Password Sarah ==

4 Awatson Password Moo ==

Table 6-4. Radreply

ID

UserName

Attribute

Value

1 Rneis Framed-IP-Address 66.26.224.46

2 Bgrossman Auth-Type Reject

Table 6-5. Radgroupreply

ID

GroupName

Attribute

Value

Op

34 Dialin
Framed-Compressi

on
Van-Jacobsen-TCP

-IP ==

33 Dialin Framed-Protocol PPP ==

32 Dialin Service-Type Framed-User ==

31 Dialin Auth-Type Local :=

35 Dialin Framed-MTU 1500 ==

36 Staticdialin Auth-Type Local :=

37 Staticdialin Framed-Protocol PPP ==

38 Staticdialin Service-Type Framed-User ==

39 Staticdialin
Framed-Compressi

on
Van-Jacobsen-TCP

-IP ==

With the configuration now complete, restart FreeRADIUS and test your setup using the instructions for using
NTRadPing in Chapter 5. Test each of your usernames and ensure that the proper attributes are returned as they're
configured in the radreply and radgroupreply tables.

6.5.1 Extending the MySQL Functionality

Now that the basic MySQL support has been installed, configured, and tested, this section will help you enable more
advanced features that extend the capabilities of the FreeRADIUS/MySQL combination.

6.5.1.1 Realm support

It is fairly simple to get realm support when using the database model for FreeRADIUS authentication. You need to
enable the stripped usernames feature of FreeRADIUS in order for realm support to work. If not, FreeRADIUS
passes the full value of the username attribute—jhassell@raleighinternet, for example—and, in this case, the database
is not set up to support that. By enabling stripped usernames, FreeRADIUS deletes the @raleighinternet portion of
the username, which allows the query against the database to proceed successfully.

To enable the stripped user name functionality:

1.

Open /etc/raddb/sql.conf in your favorite text editor.

2.

Locate the section called query config: username.

3.

Uncomment the line sql_user_name = "%{Stripped-User-Name:-%{User-Name:-none}}";

4.

Comment out the line sql_user_name = "%{User-Name}"

The realm functionality should work as expected. If you, in fact, do need to distinguish users in your database (only if
your usernames are not unique across all realms), then edit the user entries inside the authentication database and
disable the realm-stripping feature.

6.5.1.2 Redundancy with MySQL

To introduce a level of fault tolerance and added data integrity security, you may want to consider having two
machines running MySQL that replicate the user authentication database between themselves. While it's certainly not
a customized high-availability scenario like that covered in Chapter 10, it is a relatively inexpensive and functional
way to ensure that some type of contingency plan covers your customers.

To begin, make sure you have two machines running exactly the same version and revision of MySQL. This reduces
the complexity of the entire setup and makes it easier to troubleshoot should something go wrong. Determine which
machine will act as the master server and which will act as slave (there really is no significance to which machine you
select other than the push direction of the replication).

Next, copy the database directories as a set over to the slave machine to ensure both machines already have the
databases. Change the ownership of the newly copied directories on the slave machine by executing the following:
 chown -R mysql:mysql /path/to/data/directories

You may want to use the mysqldump utility instead to "dump" a copy of the database from the master server to the
slave machine—this approach works best if the two servers are running different operating systems. Then open up
/etc/my.cnf (or create it if it doesn't exist) on the master server and add the following lines:
 [mysqld]
socket=/tmp/mysql.sock
server-id=1

log-bin

Replace /tmp/mysql.sock with the path to your mysql.sock file if it's not located in /tmp.

Finally, grant permission for the slave server to connect and replicate the master server's database by running the
following SQL command (where x.x.x.x is the IP address of your slave server and password is a password of your
choosing that the slave server will be configured to use):
 GRANT FILE ON *.* TO replicate@x.x.x.x IDENTIFIED BY 'password';

Kill the MySQL daemon on the master machine, restart it, and then ensure everything still works as it did before.

Now it's time to configure the slave server. Open /etc/my.cnf (or create it if it doesn't exist) on the slave server and
add the following lines:
 [mysqld]
socket=/tmp/mysql.sock
server-id=2
master-host=x.x.x.x
master-user=replicate

master-password=password

Replace /tmp/mysql.sock with the path to your mysql.sock file if it's not located in /tmp. Also note that the server-id
value must be different than the master computer's ID, and that the master-password value is what you configured in
the previous SQL statement that was executed on the master server. Next, kill the MySQL daemon on the slave
machine, restart it, and then ensure everything still works as it did before.

Finally, execute the following SQL command to see if the replication is working:
 SHOW SLAVE STATUS;

You should see a message indicating the procedure was successful. To test whether the replication functionality is
indeed working, change some data on the master—for instance, change a password for a user in the radcheck table.
Then query that same record on the slave machine: it should reflect the change, since the replication is instantaneous.

This document is created with the unregistered version of CHM2PDF Pilot

http://www.mysql.com/default.htm
http://www.exxatools.com/SQLion.html
http://www.phpwizard.net/projects/phpMyAdmin/default.htm

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

6.6 Simultaneous Use

Recall from Chapter 1 that RADIUS is a stateless protocol. Additionally, because of the way RADIUS accounting
works, it's entirely possible and even probable that a RADIUS server will have an internal list of who is currently
logged on that is different than the actual state of the RADIUS client ports—in other words, your RADIUS server
may think users are logged on when they really aren't, and vice versa. Fortunately, most NAS equipment includes
some mechanism by which the administrator (or the RADIUS daemon servicing authentication requests) can query it
to find out which user is assigned to what port. This could be done through Telnet, the deprecated finger protocol, or
even the Simple Network Monitoring Protocol (SNMP).

This ability is especially important when attempting to control multiple logins at the same time from the same user.
There exists a utility to tell FreeRADIUS to check on the terminal server first to see if a user is already logged on
before denying his request to log on, thereby compensating for the RADIUS accounting discrepancies. The best way
to do this is by installing two modules—the SNMP_Session and BER modules—from the popular traffic-monitoring
program MRTG. (These are core Perl modules, actually.) Having those modules installed lets a utility included in
FreeRADIUS, the checkrad script, communicate with the terminal server equipment directly using the SNMP
protocol. You can obtain more information and download these modules from the "SNMP Support for Perl 5" web
site at http://www.switch.ch/misc/leinen/snmp/perl/.

If you have USR/3Com Total Control terminal server gear and you want to make use of
the checking routine, you will need the Net::Telnet module for Perl 5. This can be obtained
from the CPAN archive at http://www.perl.com/CPAN/.

To enforce a simultaneous-use restriction, you need to add a parameter to either an individual user's entry or a
DEFAULT entry in the RADIUS users file (/etc/raddb/users). The value of the Simultaneous-Use attribute is the
number of sessions that can occur at the same time with the same username. To enforce a restriction on user awatson
, for example, of two simultaneous connections, I would configure a user entry for her similar to the following:
 Awatson Auth-Type := System, Simultaneous-Use := 2
 Service-Type = Framed User

 <continue attribute listing>

You can also define a certain group of users—for example, a multilink group that can have two logins
concurrently—while the rest of the user base can only have one simultaneous session. To achieve this, use the
following DEFAULT entries and the fall-through feature:
 DEFAULT Group == "multilink", Simultaneous-Use := 2
 Fall-Through = 1
 DEFAULT Simultaneous-Use = 1

 Fall-Through = 1

Once this is configured, the server now knows to use the checkrad script (located at either /usr/local/sbin/checkrad
or /usr/sbin/checkrad). When does it invoke the script? When a user connects, FreeRADIUS looks in its list of
currently active users, which is kept in /var/log/radutmp. (Executing radwho at a command prompt will display the
contents of this file on the screen.) If it finds that the username associated with the pending request is already listed in
radutmp, then it will execute the checkrad script. The checkrad script then communicates with the NAS gear via
finger, Telnet, or SNMP and determines whether that user is indeed logged on. It then either accepts or denies the
request for a concurrent session based on the value of the Simultaneous-Use attribute as configured in the users file.

Be forewarned that the load and performance impact of using checkrad can be quite
significant and can affect not only the RADIUS server but also busy RADIUS client
machines.

Table 6-6, which can also be found on the FreeRADIUS web site (http://www.freeradius.org), lists the types of
terminal servers supported, the method by which FreeRADIUS can communicate with them, what software module
support it needs, and whether it requires an entry in the /etc/raddb/naspasswd file.

Table 6-6. NAS compatibility with checkrad.pl

Vendor

Naslist type

Checkrad method

Modules required

Naspasswdentry
required?

Lucent

ascend SNMP

SNMP/BER

No

Nortel

Bay Finger

Finger command

No

Cisco

Cisco SNMP

SNMP/BER

Username: SNMP;
Password:
community

Computone

Computone Finger

Finger command

No

Nortel

Cvx SNMP

SNMP/BER

No

Digitro

Digitro Rusers

Rusers command

No

Livingston

livingston SNMP

SNMP/BER,
ComOS 3.5 or later
with SNMP

No

Lucent

Max40xx finger

Finger command

No

VersaNet

versanet SNMP

SNMP/BER

No

Various

portslave finger

Finger command

No

Patton

patton SNMP

SNMP/BER

No

Cyclades

pathras telnet

Net::Telnet

Yes

Cyclades

Pr3000 SNMP

Snmpwalk command

No

Cyclades

Pr4000 SNMP

Snmpwalk command

No

USR/3Com

tc telnet

Net::Telnet

Yes

USR/3Com

usrhyper SNMP

SNMP/BER

No

USR/3Com

netserver telnet

Net::Telnet

Yes

6.6.1 When It Goes Pear Shaped

When your simultaneous use enforcement doesn't seem to work right, try the following troubleshooting steps:

1.

Make sure the NAS machine is contained in the naslist file and that its type is identified correctly.

2.

Check the naspasswd file and make sure all is well.

3.

Use the -sx flag when starting FreeRADIUS and look at the output to determine if it is seeing the
Simultaneous-Use line.

4.

Run radcheck.pl manually and see if it executes. This eliminates Perl version problems and module presence
failures.

There are also some equipment-specific bugs that may be interfering with the functionality.

6.6.1.1 3Com and US Robotics equipment

3Com/US Robotics equipment has a tendency to incorrectly calculate SNMP object ID values. There is a
workaround for this, however. First, make sure the HiPerArc software is updated to at least Version 4.2.32. To
prevent simultaneous logins, you need to issue the following command on the NAS machine:
 set pbus reported_port_density 256

Also, look at the checkrad program on the RADIUS server and comment out the following line, found under the
subroutine sub_usrhiper:
 ($login) = /^.*\"([^"]+)".*$/;
6.6.1.2 Ascend equipment

You may see the following error entry in your log files:
 Wed Jun 19 15:41:04 2002: Error: Check-TS: timeout waiting for checkrad

This problem usually occurs with MAX 4048 machines. To correct this, make sure that the NAS is correctly set up
as a max40xx in the naslist file and double-check that Finger is enabled on the NAS machine. It can be found by
going to the Ethernet menu, selecting Mod Config and setting Finger to Yes.

6.6.1.3 Cisco equipment

You may see the following error entry in your log files:
 Wed Jun 19 17:09:16 2002: Error: Check-TS: timeout waiting for checkrad

This problem is mainly caused by not having SNMP enabled on the Cisco machine. Make sure the following line is
present in the configuration file:
 snmp-server community public RO 33

Replace 33 with the access list that distinguishes machines that can access SNMP information from those that can't.
For example, the following access list does this:
 access-list 33 permit 192.168.0.1

That line allows the machine at 192.168.0.1 to access the community information.

This document is created with the unregistered version of CHM2PDF Pilot

http://www.switch.ch/misc/leinen/snmp/perl/default.htm
http://www.perl.com/CPAN/default.htm
http://www.freeradius.org/default.htm

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

6.7 Monitoring FreeRADIUS

Part of proactive system administration is monitoring for problems before they occur. While you, as the administrator,
are probably at your office and within reach of the RADIUS server for 8-12 hours a day, the remaining hours aren't
devoid of users who depend on your service. What happens when (not if) your FreeRADIUS server has a problem
and you're not around?

This section describes using some freely available tools to set up FreeRADIUS such that if it happens to shut down
because of an error, it automatically restarts. While it's still your responsibility to troubleshoot the problem, it does
recover the service so you don't have to deal with angry users calling because they can't get on the Internet.

Let's use Dan Bernstein's DaemonTools package, and in particular, its "supervise" service to monitor radiusd. To get
started, surf to the DaemonTools web site at http://cr.yp.to/daemontools.html, download the package, and install it.
Dan has complete installation instructions on his site as well as a good deal more documentation that outlines and
details the capabilities of DaemonTools. That's beyond the scope of this application, but it's likely you can find a use
for some of the service management that DaemonTools provides.

Once the tools are installed, you need to create a RADIUS service directory that DaemonTools can use. It's
common practice to place this directory on the /var partition in the svc directory, although it can be placed anywhere
you choose. For the rest of this section, I'll assume you chose the /var/svc/radiusd directory. Make the directories,
and then open up your favorite text editor.

In the text editor, you need to create a simple shell script, called run, that will call up radiusd in the event it fails.
Here's a sample:
 #!/bin/sh
exec /usr/local/sbin/radiusd -s -f

Of course, replace these directories with ones appropriate for your machine as needed. The -f flag is important in this
case; it tells FreeRADIUS to stay on the console screen and not return to a command prompt. If it detaches itself,
DaemonTools will think it died and attempt to restart it using the shell script provided above.

Now, make that script executable:
 chmod +x /var/svc/radiusd/run

Finally, tell DaemonTools to watch FreeRADIUS.
 Supervise /var/svc/radiusd.

DaemonTools is now setup and will restart radiusd upon its death.

Table 6-7 lists additional maintenance commands, available from the DaemonTools svc utility, that you will likely find
useful.

Table 6-7. FreeRADIUS service management commands

Action

Command

To shut down FreeRADIUS normally

svc -d /var/svc/radiusd

To restart FreeRADIUS

svc -u /var/svc/radiusd

To kill FreeRADIUS (send a HUP)

svc -h /var/svc/radiusd

To shut down and stop monitoring

svc -dx /var/svc/radiusd

This document is created with the unregistered version of CHM2PDF Pilot

http://cr.yp.to/daemontools.html

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

Chapter 7. Other RADIUS Applications

The previous two chapters have focused on using the FreeRADIUS product as the basis of an
authentication/authorization/accounting system for a regular Internet service provider-style setup. In this chapter, I'll
cover FreeRADIUS in conjunction with Web, LDAP, and email servers, and will discuss a utility, RadiusReport, for
parsing RADIUS accounting files to glean valuable information from them.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

7.1 RADIUS for Web Authentication

Chances are good that you have an area of your web site that needs to be protected from general public access. If
you use the Apache web server, you may be familiar with the various methods by which this can be done: using an .
htaccess and .htpasswd combination, setting Unix file system permissions, using Allow and Deny directives inside
the Apache configuration file, and others. However, it's now possible to instruct Apache to authenticate against an
existing RADIUS database of users, thereby protecting the area of your web site from unknown users and allowing
access to those you trust.

This authentication is done using a module developed for Apache 1.x called mod_auth_radius. (Apache 2.0 had not
been released at the time, and the module has yet to be updated for Version 2.0.) In effect, Apache becomes a
RADIUS client—occupying the traditional position of the NAS in the authentication chain—and hits off the RADIUS
server for authentication and accounting requests. Not only does this save administrative time by consolidating what
potentially could become two user databases into one, but it also allows for more flexibility. Namely, RADIUS
accounting can be used to track usage statistics for this protected site. Apache can keep detailed logs, but sometimes
it's helpful to have all audit information in one place.

There are several potential applications for this module. The following scenarios are likely candidates for this module:

•

A corporation who wants to create a special Intranet site specifically for its remote, mobile, and home users

•

An Internet service provider who wishes to create a private site for subscribers only; perhaps a billing or
support site that contains technical information suitable only for paying customers

•

A web-based business that sells subscriptions to an online database or an online journal

And there are many others.

7.1.1 The Functionality

The mod_radius_auth module follows a predictable pattern in its use. A typical transaction occurs like this:

1.

The browser submits a page request for http://www.website.com/index.html.

2.

Apache sees that the directory is secured and sends an Authorization Required prompt (with spaces for the
username and password) to the end user.

3.

The user responds to the authentication request with his credentials. The browser sends the response, and the
same page request once again, to Apache.

4.

Apache receives the user's response and hands it off to mod_auth_radius. The module sees that a cookie is
not present (since this is the user's first request.) It constructs a RADIUS request and transmits it to the
RADIUS server.

5.

The RADIUS server performs the authentication and sends its response back to mod_auth_radius.

6.

mod_auth_radius interprets the RADIUS server's decision. If the authentication was deemed successful, the
module sends a cookie with the public and private information hidden using MD5. If the authentication was
unsuccessful, the module returns an Access Denied message.

7.

The web browser sends the cookie with any other request. As long as mod_auth_radius recognizes the
cookie as valid, it will not send another request to the RADIUS server.

The cookies that are set on the end user's computer are valid for the lesser of the two values specified in the module's
configuration and the secured area's configuration. The cookies also are killed when the browser ends, either by
crash or via a user-initiated exit. The module will attempt to make cookies expire that, in its opinion, are too mature.
However, if the browser does not acknowledge or follow through with the cookie expiration requests, the
authentication prompt will appear repeatedly until the user reloads the browser and the site.

7.1.2 Configuring the Module

First, compile the module into Apache or use the apxs utility to instruct Apache to use mod_auth_radius as a
dynamic module. You can obtain the module from its home page at http://www.freeradius.org/.

To compile the module statically into Apache itself, issue the following command:
 ./configure --add-module=/path/to/mod_auth_radius.c && make

The module is completely installed when the make process finishes without errors. Alternatively, to use
mod_auth_radius as a dynamic module, use apxs as in the following example:
 apxs -i -a -c mod_auth_radius.c

Next, edit the Apache httpd.conf file to instruct Apache to load the module. Include a line in the LoadModule
section like this:
 LoadModule radius_auth_module libexec/mod_auth_radius.so

Then, scroll down to the AddModule section. Immediately following the line adding mod_auth.c, add the RADIUS
module, as shown here:
 AddModule mod_auth_radius.c

Now you need to create a section with specific configuration directives for the mod_auth_radius module. At the end
of httpd.conf, create a section like the following example and configure it as explained next:
 <IfModule mod_auth_radius.c>

AddRadiusAuth radiussservername:port sharedsecret timeout
AuthRadiusBindAddress 192.168.0.1
AddRadiusCookieValid 5

</IfModule>

The AddRadiusAuth directive tells Apache to authenticate against RADIUS. You specify the name of the RADIUS
server, the port to use, the shared secret for the web client, and the timeout period Apache should wait before giving
up and assuming no response will be sent. The AuthRadiusBindAddress directive specifies the local interface on
which requests should be sent. The RADIUS server can then be set to accept requests only from this address for
added security. (This directive is not required, since by default the module lets the underlying operating system
choose the interface to use.) The AddRadiusCookieValid directive specifies the minutes for which the cookie sent in
the response to the end user from the web client is valid. Setting this value to zero (0) signifies that the cookie will be
valid forever.

The initial configuration is now complete. The next step is to define the areas of the web site that need protection.
There are two ways to do this: (a) you can use an .htaccess file placed in the directory to be protected, or (b) you
can define the locations inside httpd.conf. In this example, I'll assume that you've decided to define the locations
inside httpd.conf. If you choose to use an .htaccess file, the directives between the <Location /secured/> and
</Location> tags should be placed into the .htaccess file and subsequently saved into the directory to be secured.

To control access on a per-directory basis using httpd.conf, add the section to the file and configure it as such:
 <Location /secured/>

AuthType Basic
AuthName "RADIUS authentication for localhost"
AuthAuthoritative off
AuthRadiusAuthoritative on
AuthRadiusCookieValid 5
AuthRadiusActive On
require valid-user

</Location>

The following definitions provide an explanation of each of these directives.
 AuthType

This module requires basic authentication since digest authentication won't work correctly. (See Ben Laurie's
Apache: The Definitive Guide, (O'Reilly), for more information on the two types.)
 AuthName

The contents of this string are included in the password prompt presented to the end user. It simply serves to inform
the user of which protected area he's attempting to enter.
 AuthAuthoritative

This directive ensures that other authentication types are not used for this particular site area. You can net the same
effect by commenting out other authentication types appearing previously in httpd.conf, but that is only
recommended if this server is used only for this protected site.
 AuthRadiusAuthoritative

This tells Apache to consider all RADIUS responses authoritative—that is, the RADIUS responses are "the final
answer" (thanks, Regis).
 AuthRadiusCookieValid

This is the same directive as the cookie setting globally set in the module configuration section. The server will choose
the lower of the two values and set the cookie to expire at that interval. This value is in minutes.
 AuthRadiusActive

This turns on RADIUS authentication globally. If there's an area of the site for which you want to use some other
authentication method than RADIUS, set this directive to Off for that particular section. The default, if this directive is
not included, is On.
 Require valid-user

This directive ensures that only valid users can access the site. If the RADIUS server returns anything but a valid
user, access will not be permitted.

7.1.3 Using Challenge-Response with mod_auth_radius

The mod_auth_radius module is completely compliant with the challenge-response authentication method.
However, end-user browser support is relatively limited: Netscape 3.x and 4.x and others support it well, but
unfortunately, the browser with the largest hunk of market share, Internet Explorer, doesn't properly follow the RFC
and, therefore, doesn't function correctly with challenge-response. You should certainly consider this caveat in
determining whether to use challenge-response.

For supported browsers, the key to challenge-response is that the RADIUS cookies are set upon any authentication
attempt. You can enter gibberish for your password and try to authenticate into a secured area, but while you are
denied access because the password was incorrect, the cookie is being set with the RADIUS state attribute. The
module also modifies Basic-Authentication-Realm. You then receive another prompt to try again, typically with a
challenge. Once you enter the correct password (or the correct response to the challenge), all is well.

7.1.4 Limitations of the Module

Of course, opening any sort of private system to the Web presents a smorgasbord of security concerns. While
Chapter 8 serves to detail the inherent problems and limitations of the RADIUS protocol, these limitations are still
present using mod_auth_radius and should be considered.

First, using static passwords over the Web is not secure. The password from the end user to the web server is sent in
plain text ("in the clear," that is) and is open to sniffing by anyone with the proper tools. This problem is exacerbated
when the RADIUS server exists on the same machine as the web server. RADIUS was not designed to be directly
exposed, and with script kiddies and crackers roaming about, it's a problem you simply don't want to have.

Second, using the same server for Web and dial-up users isn't the best idea, either. The problem lies in this: if the
cracker manages to gain access to your web site using a sniffed password, he would have no trouble actually dialing
up and gaining access to your system. He can pose as anyone and this becomes a serious threat to the integrity of
your network. You might say that this seems almost a direct opposite to the benefits I was preaching about
previously.

However, there are ways to work around these limitations:

•

Use secure sockets layer (SSL) to protect the password.

•

If you must open the web server to the Internet, protect the site with a secure server certificate (https) and
purchase an SSL certificate from one of the many providers. This at least provides some protection for the
passwords.

•

Use one-time password (OTP) authentication. If you don't have the computing resources to separate the
web server you want to protect and the RADIUS server, OTP significantly reduces the risk of password
sniffing. See Chapter 8 for more information.

•

Use your network architecture to your advantage. If your clients are dialing into a local area network—if they
receive a private-class IP address such as 10.0.0.1, 172.16.0.1, or 192.168.0.1, for example—then the risk
of snooping and sniffing is also moot. The mod_auth_radius module could then be used to protect
user-specific information on the local network without opening the RADIUS passwords up to the entire
Internet.

If you do decide to use OTP authentication, there are some caveats to the functionality of the module. When you
access a site without stipulating a specific page on the site—http://www.jonathanhassell.com/, for
example—Apache searches for files named home.cgi, home.html, index.cgi, and index.html. When
mod_radius_auth looks for these files and it can't find them, it returns a 404 (Not Found) error. However, when it
does find a file, it sets a cookie and returns a successful page request. The browser, though, might not use that cookie
when it accesses another page on the site, which causes another authentication transaction with the RADIUS server
(since the credentials include an OTP).

To work around this, surf to a page on the web site. Have that page contain a link to a specific location on the web
site (i.e., http://www.jonathanhassell.com/private/index.html) and instruct the user to use that link to get to the
secured area. This way, the user only has to use one authentication attempt to get to the secured pages. Note that this
is only a real problem for implementations that use OTPs, but if static passwords are in use, multiple authentication
attempts will take place. The credentials, however, are re-sent, and the user is not prompted: the only problem is the
increased traffic, which may not be a significant limitation for your system.

This document is created with the unregistered version of CHM2PDF Pilot

http://www.website.com/index.html
http://www.freeradius.org/default.htm

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

7.2 Using the LDAP Directory Service

The ever-present complaint of systems administrators who deal with multiple user databases across multiple
platforms is that of efficiency. Why can't all of my users be listed, configured, and managed from one set of tools?
Why can't my various application servers—secured Web, email, newsgroups, and others—all tie into that one
database and use its list? Without a centralized repository for user information, the effort of simply changing a
password is multiplied by the number of systems on which a unique copy of the password is stored.

Fortunately, there is an answer, and better yet, it's standards based. The Lightweight Directory Access Protocol, or
LDAP, is a directory-based database of information about users of a particular network. LDAP is a protocol that
uses standard queries, much like SQL, to talk with a compliant backend. Using LDAP allows applications that
support it to communicate with a centralized database and use its information in their internal operations. While a
discussion about LDAP could fill volumes (and, in fact, has), the important fact to take away from this commentary is
that FreeRADIUS has full and complete support for LDAP. This is part one of the equation. I have an LDAP client,
but it needs something to talk to.

Enter CommuniGate Pro, an excellent email server product from the fine folks at Europe-based Stalker Software (
http://www.stalker.com). CommuniGate Pro is designed to run on any number of processor architectures: from the
Intel x86 regime to IBM's midrange servers and OS/400 computers. The product excels in every respect: it's
intelligently designed, easy to install and use, and an excellent performer. The product has been subjected to
numerous benchmarks in competition with other Internet mail servers and won each test hands down. It also is a fine
LDAP server and can be configured to allow other applications to query its user database in full LDAP compliance.
That's part two of our equation.

How does all of this fit together? Most organizations need email functionality. Of course, you're reading this book
likely because your organization provides dial-up access to end users, either for profit or as part of your regular
corporate business activities. Allowing FreeRADIUS, a robust RADIUS server, and CommuniGate Pro, an excellent
mail server, to communicate with each other brings you the best of both worlds: stable server platforms and
interoperability to ease the headaches of administration.

In this section, I'll detail how to make FreeRADIUS authenticate against the CommuniGate Pro LDAP user
database. Most of the instructions in this section can be applied to any other LDAP database product, but there are a
few instructions specific to CommuniGate Pro that are detailed. You can realize the benefits of this integration with
any LDAP backend, but using CommuniGate Pro gives you a powerful email server to boot. On that note, let's begin!

7.2.1 Configuring FreeRADIUS to Use LDAP

To instruct FreeRADIUS to use the LDAP protocol instead of PAM or another local user authentication database,
you need to install the OpenLDAP product. As of this writing, the latest version of OpenLDAP is 2.0.23. To install
OpenLDAP on your system, perform the following steps:

1.

Download the product, preferably in .tar.gz form, from the OpenLDAP web site at
http://www.openldap.org/software/download/.

2.

Decompress the program with the following command:
tar xzf openldap-stable-20010524.tar.gz

3.

Change to the directory where the uncompressed files are and configure the program by executing the
following:
cd openldap-2.0.11

./configure -sysconfdir=/etc --enable-slapd=no -enable-slurpd=no --with-

threads=no
4.

Make the program's binaries with the following commands:
make depend

make
make install

cd ..

FreeRADIUS Versions

By press time, FreeRADIUS Version 0.6 should be released and available from the FreeRADIUS web
site. However, the previous version, 0.5, has a buggy LDAP module that cannot handle transactions
with LDAP servers that close their connections, such as CommuniGate Pro. The bug has been fixed in
the development CVS system; however, the released versions have not been updated. If Version 0.6 is
not available, a modified Version 0.5 with the repaired LDAP module code can be downloaded from
the author's web site at http://www.jonathanhassell.com.

Now install FreeRADIUS with Version 0.6 or later. The latest information and updates to the FreeRADIUS
product, as mentioned in Chapter 5, can be found at the official program web site at http://www.freeradius.org.

1.

Download FreeRADIUS 0.6 or later.

2.

Ensure that your Perl binaries are in your system path. If not, make a symbolic link from /usr/bin/perl to their
real location with a command similar to the following:
ln -s /usr/bin/perl /bin/perl

3.

Decompress the program with the following command:
tar xzf freeradius-0.6-tar.gz

4.

Change to the directory where the uncompressed files are and configure the program by executing the
following:
cd freeradius-0.6

./configure -prefix=/usr --localstatedir=/var --sysconfdir=/etc --with-ldap --
without-rlm_x99_token

Note that the -without-rlm_x99_token directive is only needed for Red Hat Linux Versions
7.0 and earlier. Later versions do not require it.

5.

Make the program's binaries with the following commands:
make

make install

Once the programs are installed, some edits to the FreeRADIUS configuration files are required. Inside the main
configuration file, radiusd.conf, you must add a modules section that instructs FreeRADIUS to look for and use an
LDAP connection. In this case, the LDAP server I want to specify is the CommuniGate Pro server. The following is
an example configuration:
 modules {
 ldap {
 server = "YourCommuniGateProServer.isp.com"
 port = 10389
 basedn = "cn=isp.com"
 filter = "(|(uid=%u)(uid=%U))"
 start_tls = no
 ldap_connections_number = 5
 timeout = 4
 timelimit = 3
 net_timeout = 1
 }

}

Next, add the LDAP protocol to the authenticate and authorize sections of radiusd.conf. Note that these protocols
are followed in the order listed when FreeRADIUS is authenticating a user, so it's certainly possible and, in fact,
good practice to set up alternate methods of authentication, both in anticipation of future needs and as a backup
source of authentication. The following example shows this section of radiusd.conf configured appropriately to use
LDAP and a MySQL database as well:
 authorize {
 preprocess
 suffix
 files
 sql
 ldap
}
authenticate {
 ldap
}
preacct {
 suffix
 files
 preprocess
}
accounting {
 sql
 unix
 radutmp

}

Now that FreeRADIUS knows to use the LDAP module as a first point of authentication, that's all that is required on
that end. Next, configure CommuniGate Pro to expect and listen for FreeRADIUS' communication.

7.2.2 Configuring CommuniGate Pro for LDAP Use

The CommuniGate Pro LDAP module is amazingly easy to configure. The only caveat with authenticating is that the
CommuniGate Pro passwords have to be stored in plain text. However, you can configure the LDAP module in
CommuniGate Pro to hide all passwords from all users—even the administrative-like postmaster user—so that
they're not accessible from the outside.

First, CommuniGate Pro needs to know that the passwords for the users it knows about (in this case, the users with
active email addresses) should be stored in the LDAP directory and not internally. From the administrative web
interface, commonly on port 8010, navigate to the Domains menu and then select Directory Integration. Under the
section called Custom Account Settings, select the option Store Passwords in Regular Account Records. Click the
Update button to refresh the settings.

Next, tell the product to populate the LDAP database with the contents of its current internal database. Navigate to
Accounts and then select Domain Settings. On that page, find the Directory Integration section and select Keep in
Sync. Finally, click Delete All to flush the database, and then click Insert All to repopulate.

And that completes the configuration. You can test your setup using the NTRadPing utility or the radtest program,
both of which are programs covered in Chapter 5.

This document is created with the unregistered version of CHM2PDF Pilot

http://www.stalker.com/default.htm
http://www.openldap.org/software/download/default.htm
http://www.jonathanhassell.com/default.htm
http://www.freeradius.org/default.htm

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

7.3 Parsing RADIUS Accounting Files

One of the most useful aspects of RADIUS is the utility of its accounting portion. Logs from the RADIUS accounting
server can be used for a multitude of purposes, including billing, usage planning, attack forensics, and auditing. Most
Internet service providers have billing systems that directly import, analyze, interpret, and report the data contained
within the accounting logs. But for corporate situations in which billing isn't required or for ISPs wanting information
not provided by the billing system, it's useful to have a utility that will read the logs and report basic information for
the outside of your standard reporting system.

Paul Gregg has created an excellent utility, written in Perl, called RadiusReport that offers this functionality.
RadiusReport allows you to import log files and create different reports based on their contents. The utility supports
the log files that FreeRADIUS generates, and it also has support for the following RADIUS servers:

•

Livingston Radius, Versions 1.16, 2.0, and 2.01

•

Dale Reed's RadiusNT

•

Merit Radius

•

Ascend Radius

•

Radiator

•

Novell's BorderManager Authentication Services (requires a separate utility to "massage" the format of the
logs)

RadiusReport will generate all sorts of useful reports, including the projected telephone bill, reporting filtering based
on specific months if you have multiple periods aggregated into a single file and parsing based on interim months. The
reports are configured and constructed from command-line flags issued with the program call. The program will even
read a compressed file, in case you use gzip or tar to compress and archive your old accounting logs.

RadiusReport is a Perl program, so it requires Version 5 of the language to be installed on the system. It also requires
the POSIX module, which comes bundled with the Perl language in most cases. The utility needs POSIX compliance
to correctly translate record date information into a timestamp field if your server doesn't make a timestamp.

RadiusReport can be downloaded from Paul Gregg's web site at http://www.pgregg.com/projects/radiusreport/.

7.3.1 Generating Reports

This section details the command-line flags necessary to instruct RadiusReport to generate specific types of reports.
Table 7-1 lists the various parameters that can be issued to the program at runtime.

Table 7-1. RadiusReport command-line parameters

Parameter

Function

-f
Designates the raw log file from which to create the
report

-h Creates report without header and footer text

-I Generates a report on IP addresses

-l Specifies a user; use all for all users

-o Creates individual report files for each user

-r Generates a report on the most recent login times

-tba Generates a full, detailed report

-tbac
Generates a full, detailed report with telephone company
cost analysis

7.3.1.1 Example reports

The following command produces a minimal report for a specific user:
 radiusreport -l rneis -f /var/adm/radacct/ptmstr-clt-1/detail

The resulting report looks similar to this:
 Radius Log Report for: rneis
Date Login Logout Ontime Port
--
28/05/02 18:07:01 19:22:14 15m13s A3

29/05/02 10:36:18 11:26:37 50m19s A7

Issue the following command to produce a full report for a specific user:
 radiusreport -tba -l rneis -f /var/adm/radacct/ptmstr-clt-1/detail

The result:
 Radius Log Report for: rneis
Date Login Logout Ontime Port BW-In/Out Total
--
28/05/02 13:18:19 13:38:07 19m48s A5 120.1K/309.3K 0h19m
28/05/02 22:32:24 23:32:17 59m54s A2 218.1K/1.7M 1h19m
29/05/02 19:54:33 21:15:01 80m29s A3 396.7K/1.3M 2h40m
29/05/02 19:33:53 20:05:25 31m32s A3 116.0K/1017.6K 54h24m
29/05/02 22:29:00 01:56:13 207m08s A1 1.2M/5.7M 57h51m
29/05/02 23:33:13 00:40:42 67m30s A2 276.7K/1.0M 58h59m
--
 Total Hours: 58h59m
 Average Online times: 1h52m per day, 13h08m per week

 Total Data transferred In/Out: 18.2M/67.8M

The "Port" designation in these reports is the actual port number and an identifier—either A or I—to indicate whether
the connection was asynchronous or based over ISDN. Also, the bandwidth statistics are generated based on the
RADIUS client machine's transfer amounts and not total outbound bandwidth used.

The following command produces reports for every user for all the dates up to two months previous to the current
day (the command should be placed on a single line):
 radiusreport -tba -l all -f /var/adm/radacct/ptmstr-clt-1/archives/2002\
 /05/detail:/var/adm/radacct/ptmstr-clt-1/archives/2002/04/detail

The generated report can also be placed inside individual files per user in a specific directory. To do this, make a
directory for the output and use the above command with the extra flag -o, followed by the destination directory.

The next command produces a list of users who used IP address 206.229.254.120. It assumes the log file is in the
current directory.
 radiusreport -i 206.229.254.120 -f detail

To produce a list of users, along with their last login times, use this command (it also assumes the log file is in the
current directory):
 radiusreport -r -f detail:detail.lastmonth

This command produces a complete user-to-IP mapping list. The log file is in the current directory in this example as
well.
 radiusreport -i 0 -f detail

The report generated by this command is a telephone company cost analysis for the user sholmes for April, but
includes May's logs as well to ensure coverage of a login on April 30 extending into May 1 or beyond:
 radiusreport -tbac -l sholmes -f detail.april:detail.may -d Apr
7.3.2 Using RadiusSplit

Paul Gregg has also created a utility to make the processing of log files go a bit faster by pre-processing them and
splitting logs up into per-user files. When this utility, called RadiusSplit, is used in conjunction with RadiusReport, it's
not uncommon to have a speed boost on the order of a factor of 100+, simply because log files are smaller and have
less data irrelevant to the report being generated. For example, if you're processing a report for all the logins for the
user mdunlap in May, the traditional log file would have that data, but also data for all the other users. RadiusReport
would have to go record-by-record to determine whether the data pertained to the target user or if it was for another
user. By using RadiusSplit, the RadiusReport program can go immediately to the split logs for mdunlap and process
his logs immediately, without the extraneous data.

The small, single-file Perl program can be downloaded from Paul Gregg's web site as well at
http://www.pgregg.com/projects/radiussplit/. The program reads the accounting log file and places copies of the
relevant log file entries into individual user files in the following path:
 /path/to/logfiles/yyyy/mm/username

yyyy and mm are the date on which the utility was run.

To use the program, use a standard Linux/Unix file display command and pipe the output to RadiusSplit. For
example, for a log file stored in /var/adm/radacct/ptmstr-clt-1/detail, use the following command:
 tail -f /var/adm/radacct/ptmstr-clt-1/detail | radiussplit

Then, run RadiusReport, ensuring you include the correct paths to the newly split log files. The process is described
in detail earlier in this chapter.

This document is created with the unregistered version of CHM2PDF Pilot

http://www.pgregg.com/projects/radiusreport/default.htm
http://www.pgregg.com/projects/radiussplit/default.htm

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

Chapter 8. The Security of RADIUS

It's a little ironic that I'm devoting a chapter (albeit shorter than the others) to the security shortcomings of the
RADIUS protocol, but it's something that needs doing. Unfortunately, RADIUS—a protocol designed from the
outset to provide security so that only authorized users can take advantage of resources offered to a large group of
people—has security problems, and some are actually quite serious.

The most prominent security vulnerability is rooted in RADIUS's wide use. It enjoys support from a number of
network equipment vendors and is found in nearly all Internet service providers and corporate dial-up
implementations. This popularity, however, is a double-edged sword. Security vulnerabilities in the core RADIUS
protocol leave thousands upon thousands of systems open to compromise. Further, major changes can't be made to
the core protocol, because that would run the risk of breaking compatibility with those same thousands upon
thousands of systems that run RADIUS.

In this chapter, I'll discuss these vulnerabilities, offer some workarounds that protect your systems better, and close
with a commentary from a security analyst on why users of RADIUS should push for minor protocol changes.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

8.1 Vulnerabilities

It has been discovered by many that RADIUS has some fundamental flaws that may allow an attacker to
compromise the integrity of a transaction. Primarily, the User-Password protection mechanism is inherently quite
insecure, employing encryption and cryptographic techniques improperly. The concept of a response authenticator
inside the RADIUS packet is genuinely good, but the implementation of such in the protocol is poorly designed. The
Access-Request packet is not authenticated—at least as per the protocol specification—by any machine party to the
transaction. The randomness of a client's generation of request authenticators is not really random enough. And
finally, the shared secret is a primitive method of securing RADIUS client-to-server transactions.

Now I'll look at each of these vulnerabilities in greater detail.

8.1.1 MD5 and the Shared Secret

The shared secret is vulnerable because of the weak MD5 hash that hides the response authenticator. A hacker
could easily attack the shared secret by sniffing a valid Access-Request packet and its corresponding response. He
can easily get the shared secret by pre-computing the MD5 calculation from the code, ID, length, request
authenticator, and attributes portion of the packets and then resuming the hash for each guess he makes.

8.1.2 The Access-Request Packet

There is no verification or authentication of the RADIUS Access-Request packet, as per the RFC specification, by
default. The RADIUS server will perform a check to ensure that the message originated from an IP address listed as
one of its clients, but in this day and age, spoofed IP addresses are easy to find and use. This is a serious limitation of
the RADIUS protocol design.

As of now, the only workable solution is to require the presence of the Message-Authenticator attribute in all
Access-Request messages. Briefly, the Message-Authenticator is the MD5 hash of the entire Access-Request
message, using the client's shared secret as the key. When a RADIUS server is configured to only accept
Access-Request messages with a valid Message-Authenticator attribute present, it must silently discard those
packets with invalid or missing attributes. More information on the Message-Authenticator attribute can be found in
Chapter 9 or in the RFC 2869.

If your implementation somehow prevents the use of the Message-Authenticator attribute, at least consider using
some sort of account-lockout feature, which disables authentications after a specified number of authentication
attempts within a specified time.

8.1.3 The User-Password Cipher Scheme

The way in which the User-Password attribute is handled, on a very general basis, is known as a stream cipher. A
stream cipher is an encryption method that works with continuous streams of input, which is usually a stream of
plain-text bits rather than fixed blocks; its opposite is a block cipher , which is an encryption method that processes
input in fixed blocks of input, which are typically 64- or 128-bits long. A stream cipher generates a keystream, and
this is used in the encryption: when you combine this keystream with the plain-text input stream using the XOR
operation, the contents of the stream are encrypted. The generation of the keystream can be independent of the plain
text and ciphertext, yielding what is termed a synchronous stream cipher, or it can depend on the data and its
encryption, in which case the stream cipher is said to be self-synchronizing.

In the User-Password scheme, the first 16 octets act as a synchronous stream cipher, since the plain text input is
independent of the keystream. However, after the first 16 octets, the keystream integrates the previous plain-text
input and now becomes self-synchronizing. While this may seem overtly technical, the security of this cipher is
questionable: the RADIUS protocol specification doesn't make clear what the requirements are for this cipher. MD5
hashes are generally meant to be cryptographic hashes, not stream ciphers. There may be a security problem in this
possible misuse. Even the RADIUS RFC 2865 acknowledges this problem:

The User-Password hiding mechanism described in Section 5.2 has not been subjected to significant amounts of
cryptanalysis in the published literature. Some in the IETF community are concerned that this method might not
provide sufficient confidentiality protection [15] to passwords transmitted using RADIUS. Users should evaluate their
threat environment and consider whether additional security mechanisms should be employed.

Unfortunately, the only way (at least using an Internet standard) to further secure the attributes and message of a
RADIUS packet is to use the IPsec protocol with the encapsulated security payload (ESP) extensions and an
encryption algorithm such as the triple data encryption standard (3DES). RFC 3162 describes this process in more
detail.

8.1.4 The User-Password Shared Secret

Since the User-Password attribute is protected by a stream cipher, as described earlier, it's certainly possible for
attackers to obtain information on the shared secret if they can sniff network traffic and try to authenticate against a
RADIUS server. For example, an attacker could attempt to authenticate using a password known to him. He then
receives and captures an Access-Request packet and uses a hash on a combination of the protected portion of the
User-Password and the password he originally used. Once that computation is complete, he has the result of the
MD5 (shared secret + request authenticator) operation. He already knows the request authenticator from his original
request, so he can now use a brute-force attack on the shared secret and determine it offline.

8.1.5 The User-Password Attribute and Password Attacks

An attacker can get around any rate limits of authentication placed by the administrator of the RADIUS server
because of the use of the stream cipher to protect the User-Password attribute. Here's how it works: the hacker first
tries to authenticate against a RADIUS server using a known good username and a known, but probably incorrect,
password. She takes the resulting Access-Request packet and figures out the MD5 result of the request authenticator
+ shared secret combination, as described earlier. She can then use a brute-force password attack by switching out
the passwords in the packet and using the same request authenticator and shared secret. This will only work,
however, if the password is less than or equal to 16 characters, since the User-Password cipher becomes
self-synchronizing at the 17th character by including previous ciphertext in the encryption.

8.1.6 Attacks Using the Request Authenticator

There are several possible methods of attack on using the request authenticator portion of a RADIUS packet. In
reality, all security in RADIUS is based on these authenticator fields, as they serve as unique and random "identifiers"
(not to be confused with the ID field of the packet) for each packet. However, the ultimate security depends on how
randomly these authenticators are generated. Most of the inherent security collapses when random number
generators are used with cycles that are too short or values that are repeated. In this section, I'll take a look at some
of the more probable attacks a hacker could wage against your systems through the request authenticator.

8.1.6.1 Repeated request authenticators and the User-Password attribute

It is possible to generate a bank of request authenticators and corresponding User-Password attributes if a hacker
can sniff traffic on the wire between a RADIUS client and RADIUS server during a transaction. He can then see if
any repeated values are used for the request authenticator; if they are, he can remove the shared secret from the first
16 octets of the password. In doing this, he gets the first 16 octets of two completely unprotected passwords that are
XORed together.

Now, the bottom line here is that the attacker has gotten the first 16 octets unprotected. Most passwords that users
choose, unfortunately, aren't even this long; even if they were, the hacker at least has a firm basis for a later
brute-force attack. The attacker can't get any information at all only if all users have random passwords of the same
length, which is a policy that would likely be applied and enforced by a system administrator. For this attack, a
hacker wants two different passwords of significantly different lengths. Since the lowest length password has more
padding, once the hacker completes his XOR he will have non-overlapping characters of the longer password
exposed with minimal effort on his part.

Another attack can occur if a hacker attempts authentication multiple times using known passwords and intercepts
the associated Access-Request packets. From these packets, she can get the request authenticator and the
User-Password attribute. She then XORs the known password with the captured User-Password attribute and from
the result, she has a valid bank of both request-authenticator values and the MD5 (request authenticator + shared
secret) values. If she continues to sniff the wire and observes an request authenticator value that matches the one in
her library, she can obtain the first 16 octets of the User-Password by looking up the MD5 sum from her library and
XORing it with the User-Password attribute. As well, using this library of request authenticators, the hacker could
also add appropriate identifiers and server responses she obtained by sniffing the wire. She could then masquerade
as the server and replay the old server responses when an appropriate Access-Request packet came through.

8.1.6.2 Shared secrets

The use of a shared secret in the RADIUS protocol is one of the worst design decisions possible within the context
of network security. By default, the RADIUS protocol specification allows the same shared secret to be used among
any number of clients. Because of this, from a hacker's point of view, all RADIUS clients that use the same shared
secret can effectively be considered the same client for their purposes. If one client is flawed, that machine can be
compromised and used to compromise other machines not inherently flawed, since the shared secret was exposed.
Additionally, only ASCII characters, of which there are 94 in total, are allowed to be used in making up a shared
secret. Even more stringently, the shared secret is usually limited to 16 characters or less. This makes it nearly
infinitely easier for an attacker to guess the shared secret, since he has finite bounds for both the characters and the
length of the secret that he is trying to guess.

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

8.2 The Extensible Authentication Protocol

EAP is an extension to the PPP protocol that enables a variety of authentication protocols to be used. EAP is not
tightly bound to the security method. It passes through the exchange of authentication messages, allowing the
authentication software stored in a server to interact with its counterpart in the client. EAP serves as a sort of
replacement protocol, allowing the initial negotiation of an authentication protocol (such as CHAP and MS-CHAP
Versions 1 and 2) and then the agreement on both ends of the connection on a link type, which is a specific
EAP-authentication scheme. Once these two elements have been confirmed, EAP allows for an open-ended
conversation between a RADIUS server and its client.

EAP is designed to function as an authentication "plug-in," with libraries on both the client and the server end of a
PPP connection. Each authentication scheme is associated with a particular library file, and once a specific library has
been dropped into place on both ends, that new scheme can be used. Thus, the protocol can easily be functionally
extended by vendors at any time without having to redesign the whole protocol. EAP currently supports
authentication schemes such as Generic Token Card, OTP, MD5-Challenge, and Transport Level Security (TLS) for
use in smart-card applications and support for certificates. In addition to supporting PPP, EAP is also supported in
the link layer as specified in IEEE 802. IEEE 802.1x defines EAP's use in authenticating 802 devices, like WiFi
access points and Ethernet switches.

How does EAP relate to RADIUS? EAP secures RADIUS more. Using RADIUS with EAP is not an official
authentication scheme of EAP; rather, look at it as the passing of EAP messages of any EAP type by the RADIUS
client gear and the RADIUS server. EAP over RADIUS is typically set up in this fashion: the access server is
configured to use EAP and also to use RADIUS as its authentication provider. When a service consumer attempts to
connect, the service consumer negotiates the use of EAP with the RADIUS client gear. The end user then sends an
EAP message to the RADIUS client, and the RADIUS client encapsulates the EAP message as a RADIUS message
and sends it to the RADIUS server. The RADIUS server acts on the encapsulated message and sends a
RADIUS-style message back to the RADIUS client. The RADIUS client then constructs an EAP message from the
RADIUS message and sends it back to the service consumer/end user. Figure 8-1 illustrates this flow.

Figure 8-1. EAP and RADIUS working together

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

8.3 Compensating for the Deficiencies

All of the security issues presented in this chapter have workarounds. Some have been listed within the discussion of
each vulnerability, but this section serves as a quick reference checklist, from which you can decide which
workarounds to employ in your RADIUS implementation. This section outlines some of the basic steps you can use
to compensate for some of the more nefarious RADIUS design decisions:
 Use the IPsec protocol with ESP and an encryption algorithm such as 3DES.

When IPsec encrypts the whole RADIUS message, fields open to compromise—namely the request authenticator
fields and the User-Password, Tunnel-Password, and MPPE-Key attributes—cannot be viewed. To decrypt these
fields, an attacker first must break into the ESP-protected message. This protects the entire RADIUS message and
keeps it from prying eyes.
 Require any shared secrets in use to be either 22 keyboard characters long or 32 hexadecimal digits long.

This protects against the deficiencies and the unprotected nature of the shared secret concept.
 Use a different shared secret for each RADIUS client and server pair.

This is just a basic security measure, much like having a different password for a variety of web sites and computing
resources.
 Use the Message-Authenticator attribute in all Access-Request messages. On the client side, make sure the
Message-Authenticator is used and ensure it can be configured.

On the server side, require that the Message-Authenticator attribute be present and also allow here for its
configuration. This compensates for having no Access-Request messages authenticated anywhere along the
transaction path.
 Use a cryptographic-quality random number generator to generate the request authenticator.

This offsets the rather limited quality of the request authenticator's implementation.

You might also consider protecting the links from the end user to the RADIUS client gear using EAP and one of the
strong encryption types available with its use. For example, you could use EAP-TLS, which is a strong EAP method
that requires the exchange of client and RADIUS server certificates. The use of EAP messages inherently requires a
valid Message-Authenticator certificate, which protects messages that can't otherwise be protected by the use of
IPsec.

Also, along with EAP, think about using mutual authentication methods. Very simply, both ends of the connection
authenticate their peer in mutual authentication. The authentication attempt is rejected if either end's authentication
fails. EAP-TLS is a mutual authentication method: the RADIUS server validates the user certificate of the client, and
the client validates the computer certificate of the RADIUS server.

Finally, if the PAP authentication protocol is not required, disable it on both the client and the server end. PAP should
only be used as a secure connection when it's used in conjunction with OTP and Token Card authentication where
the password is reasonably complex and changes with each use. However, even in this situation, having PAP enabled
allows for misconfigured end users to negotiate with the RADIUS client gear and at that point, they could potentially
send unprotected passwords. If at all possible, use EAP with the OTP and Token Card authentication types instead
of PAP. In the same line of thinking, disable LAN Manager encoding if you use MS-CHAP.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

8.4 Modifying the RADIUS Protocol

It may be frustrating to have to employ workarounds to inherent deficiencies in the RADIUS protocol. As informed,
knowledgeable RADIUS users (and you are knowledgeable now that you are reading this book), we need to push
for a protocol revision. Joshua Hill, of InfoGard Laboratories, eloquently makes a case for a revision in the following
mini-essay.

So, why attempt to modify RADIUS at all? Why not just go to another (presumably more modern and more secure)
protocol? Well, for the most part, the answer is, "because such a protocol doesn't currently exist." In the near future,
however, Diameter is likely to be released by the IETF.

Diameter is the planned RADIUS replacement. The great majority of all the protocol work that has gone into
Diameter has been directed at removing some of the functional limitations imposed by the RADIUS protocol.
Effectively, no work has been done that relates to the client/server security of the protocol. (CMS is defined, but this
is a security layer for the proxy to proxy interaction, not the client to proxy/server interaction.)

So, does this mean that they continue to use even RADIUS' ad hoc system? No: they removed all security
functionality from the protocol. In essence, the developers did the protocol designer's equivalent of punting. Section
2.2 of the current Diameter protocol spec says:

"Diameter clients, such as Network Access Servers (NASes) and Foreign Agents MUST support IP Security, and
MAY support TLS. Diameter servers MUST support TLS, but the administrator MAY opt to configure IPSec
instead of using TLS. Operating the Diameter protocol without any security mechanism is not recommended."

So, IPSec and/or TLS handle all security aspects of the protocol. From a security aspect, this strikes me as a very
good idea. Both IPSec and TLS are fully featured (sometimes too fully featured) protocols that many people have
reviewed. That's already much better than RADIUS ever did.

Examining this from a slightly different angle gives me some cause for concern, however. It strikes me that the
overhead imposed by a full TLS/IPSec implementation is very significant for many current-day embedded devices.
This would seem to indicate that (at least in the near future) manufactures are going to either continue to use RADIUS
or ignore the Diameter standard and perform Diameter without TLS or IPSec.

Because of this, I suspect that it would be advantageous to push for at least minimal RADIUS protocol revision.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

Chapter 9. New RADIUS Developments

Up to this point, I've covered the contents and specifications of the original RADIUS RFC drafts. Since those drafts
were approved and published, new advancements in technology have mandated some revisions to those RFCs,
particularly in the areas of tunnel support and new security technologies. In this chapter, I'll cover these updates and
how they might affect your current implementation or any changes you will make in the future.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

9.1 Interim Accounting Updates

RADIUS now includes support for interim accounting updates. Prior to the issuing of the RADIUS Extensions RFC
in June 2000, accounting updates were done primarily at the beginning and end of a transaction, when the server
received Accounting-Start and Accounting-Stop packets from the user. However, now the server can include the
Acct-Interim-Interval attribute in the message. The value of this attribute is the time (in seconds) between accounting
update messages. An administrator can also choose to configure a minimum value locally on the RADIUS client, but
this value always overrides any Acct-Interim-Interval value found in an Access-Accept packet.

This attribute can include all the attributes found in the standard Accounting Stop message except the
Acct-Term-Cause attribute. The data sent within the Acct-Interim-Interval packet is always cumulative; that is to say,
the data in each interim update contains data from the start of the session through the current state of the session at
the time the packet is sent. Because this data is cumulative, it's up to the RADIUS client gear to ensure that only one
interim update packet exists on the wire at once. Some RADIUS client machines may choose to add a delay of some
amount of seconds to make sure that the previous condition is satisfied.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

9.2 The Apple Remote Access Protocol

The Apple Remote Access Protocol (ARAP) sends traffic based on the AppleTalk protocol across PPP links and
ISDN switched-circuit networks. ARAP is still pervasive in the Apple market, although the company is attempting to
transition into an Apple-specific TCP stack for use over a PPP link. ARAP support is typically found in most
RADIUS client gear, and RADIUS now supports authenticating based on the ARAP protocol.

ARAP authentication typically takes one to two steps, as follows:

1.

The first step is basically a mutual authentication with an exchange of random numbers signed with a key,
which happens to be the user's password. The RADIUS client challenges and authenticates the dial-in client,
and the dial-in client challenges and authenticates the RADIUS client challenges. First, the RADIUS client
sends random numbers of 32 bits to the dial-in client inside an ARAP msg_auth_challenge packet. Then, the
dial-in client uses his password to encrypt the two random numbers sent by the RADIUS client with DES.
The dial-in client sends the result back in a msg_auth_request packet. Finally, the RADIUS client unencrypts
the message based on the password it has on record for the user and verifies the random numbers are intact.
If so, it encrypts the challenge from the dial-in client and sends it back in a msg_auth_response packet.

2.

The RADIUS client may initiate a second phase of authentication using optional add-in security modules,
which are small pieces of code that are run on both ends of the connection and provide read and write
access across the link. Some security token vendors use these add-ins to perform their own proprietary
authentication.

There are some caveats to integrating ARAP and RADIUS based on the way ARAP is designed. Namely, ARAP
transmits more security profile information after the first phase completes but before the second phase of
authentication begins. The profile information is contained within a single attribute and is a series of numeric
characters relating to passwords. Even so, challenge responses and this new profile information must exist at times
that may seem a bit non-standard. But it is the standard.

To allow an ARAP-based client access to the resources the RADIUS server is protecting, an Access-Request
packet must be issued on behalf of the ARAP client. This process takes place as one would imagine: the RADIUS
client with the ARAP protocol generates a challenge based on a random number and, in response from the end-user
client, receives the challenge and the username. The relevant data is then forwarded to the RADIUS server inside a
standard RADIUS Access-Request packet. The data that is transplanted is as follows: User-Name,
Framed-Protocol with a value of 3 for ARAP, ARAP-Password, and any other pertinent information like
Service-Type, NAS-IP-Address, NAS-Id, NAS-Port-Type, NAS-Port, NAS-Port-Id, Connect-Info, and others.
Note that only one of the User-Password, CHAP-Password, or ARAP-Password attributes needs to be present in
the Access-Request packet. Any EAP-Messages attributes supercede any of those attributes' presence in a packet.

The authentication then takes place. If the RADIUS server doesn't support ARAP, it should return an Access-Reject
message. If it does, then in order to authenticate the user it should verify the user response using the challenge, found
in the first eight octets of the request authenticator, and the associated response, found in the first eight octets of the
ARAP-Password attribute. The resulting Access-Accept message, if this information is verified and the user is indeed
successfully authenticated, should be formatted in the following manner:

•

The ID and Response Authenticator fields should be included as per the normal RADIUS standard.

•

The Service-Type attribute should be Framed-Protocol.

•

The Framed-Protocol attribute should be set to a value of 3, signifying ARAP.

•

The Session-Timeout attribute should be set to the maximum connect time. It can also be set for unlimited
time by either setting the value to -1 or not including the attribute in the packet. All machines party to the
transaction will consider the absence of attribute to mean the user is allowed unlimited connect time.

•

The ARAP-Challenge-Response attribute should be set to a value of eight octets of the response to the
challenge. The RADIUS server forms this by finding the challenge from the last eight octets of the
ARAP-Password attributes and performing DES encryption using the password of the user as the key.

•

The ARAP-Features attribute contains information that the RADIUS client should encapsulate in a feature
flags packet in the ARAP protocol.

•

A single Reply-Message of up to 253 text characters can be included.

•

Framed-AppleTalk-Network may be included.

•

Framed-AppleTalk-Zone, of up to 32 characters, may also be included.

Zones are an interesting concept that deserve some commentary. The ARAP protocol maps this concept of zones,
which designate access privileges a user may have that correspond with an area or a set of resources. A Zone
Access Flag is defined along with a list of configured zones; this access flag specifies how the user is allowed to
access the zones in the list. For example, the user might be able to use only the default zone's resources, or he may
be allowed to use only the zones in an accompanying list, or he may be allowed to see all zones except those in his
list. The RADIUS client gear handles zones by using configured filters with the same names as the ARAP zones. It
uses the ARAP-Zone-Access attribute, which contains an integer similar to the zone access flag. The name of the
zone is then transplanted by the RADIUS client into pertinent RADIUS packets using the standard RADIUS
Filter-ID attribute.

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

9.3 The Extensible Authentication Protocol

EAP is supported in the new RADIUS extensions and allows for new authentication types to be used over links
running on the PPP protocol. Authentication schemes such as public key, smart cards, one-time passwords,
Kerberos, and others are supported over PPP when EAP is used. To support EAP, RADIUS includes two new
attributes—EAP-Message and Message-Authenticator—that are described in this section.

Typically, the RADIUS server acts as an intermediary between the client and a backroom proprietary security and
authentication server. It normally encapsulates the EAP packets within a standard RADIUS packet, using the
EAP-Message attribute, and then transmits them back and forth between the two machines. This lets the RADIUS
server talk to the other proprietary authentication server using a standard protocol that requires no special
modifications on the RADIUS server. It can still fully support standard RADIUS requests with reduced overhead.

A typical EAP over RADIUS transaction occurs in a standard format, which is outlined here:

1.

The dial-up client and the RADIUS client gear negotiate the use of EAP within their specific link control
protocol—this is most commonly PPP.

2.

The RADIUS client then sends an EAP-Request/Identity message to the client unless its identity has been
verified through some other means, such as callback or caller ID.

3.

The dial-up client then responds with an EAP-Response/Identity message.

4.

The RADIUS client gear receives this response from the client and forwards it to the RADIUS server inside
a standard RADIUS Access-Request using the EAP-Message attribute.

5.

The RADIUS server responds with a standard Access-Challenge packet that contains an EAP-Message
attribute. The EAP-Message attribute contains a full EAP packet.

6.

The RADIUS client gear unwraps the encapsulated EAP message and forwards it to the dial-up client.

The authentication continues as many times as needed until either an Access-Reject message or an Access-Accept
message is received. If the EAP transaction follows these typical steps, then the RADIUS client gear will never have
to manipulate an EAP packet. Of course, the world is not always as simple as that; as such, there are a couple of
caveats to this scenario.

First, you must permit proxy capability between RADIUS machines that may not be compliant with the EAP
protocol. If the RADIUS client machine sends the EAP-Request/Identity, as described previously in step two, the
RADIUS client has to copy the relevant information into the appropriate fields in a standard RADIUS packet. For
example, the contents of the EAP-Response/Identity packet need to be copied into the User-Name attribute. As
well, the NAS-Port or NAS-Port-ID attributes should be included in the Access-Request packet, and the
NAS-Identifier and NAS-IP-Address attributes must be included. (All of this must, of course, be present in the
subsequent packets exchanged between the proxy machines and the original, EAP-compliant RADIUS server.) All
of this is to facilitate accounting.

Second, the RADIUS client may not always issue the EAP-Request/Identity packet. Primarily, this occurs when the
identity of a user has been verified through some other means, such as a callback and caller-ID value. You can tell
this has happened when the Called-Station-ID or Calling-Station-ID attributes are present in a RADIUS packet
(these are required to be present when identity is verified through their use). In this case, the RADIUS client sends a
standard Access-Request packet to the RADIUS server with an EAP-Message; inside that message is the
EAP-Start instruction, which is indicated by sending an EAP-Message attribute with a length of two octets. This
method, although convenient, is not within the RADIUS specification as per RFC 2865, and there are problems with
this approach when proxies are in use.

9.3.1 Examples of an EAP Conversation

Figure 9-1 is an example of a transaction between a dial-up client, a RADIUS client box, and an EAP-compliant
RADIUS server using the OTP authentication scheme. (This is the same example used in the RADIUS Extensions
RFC, number 2869. It has been remodeled for clarity and potentially better visual comprehension.)

Figure 9-1. A typical RADIUS over EAP transaction

9.3.2 Potential Uses

EAP has a lot of potential, although its current uses are limited since most of the protocols it uses to talk with a
backend security authenticator are proprietary, largely due to a lack of standardization. However, RADIUS over
EAP compensates for some of the security deficiencies of the core RADIUS protocol's design, as discussed at length
in Chapter 8, and is recommended for use where appropriate.

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

9.4 Tunneling Protocols

With the advent of work-from-home strategies and the branch-office concept becoming ever more popular, the
dependence on access to corporate networks and privatized ISPs has become stronger. There exists a way to use a
sort of tunnel to log in to corporate network over the Internet and access that network's resources as though you
were locally attached to it. Although discussing tunnels is beyond the scope of this book, RADIUS does support a
variety of tunneling protocols, both voluntary and compulsory. New RADIUS attributes were introduced with RFC
2868 that provide support for this emerging technology.

As well, private ISPs and even some corporate IT data centers want to be able to account for the use of their service
for accounting, billing, and auditing purposes. RADIUS accounting, of course supporting the AAA model as
discussed in Chapter 1, is an obvious way to collect this data, especially with the new tunneling-support attributes,
some modifications to the Acct-Status-Type attribute, and some entirely new attributes specifically focused at
RADIUS accounting.

The new values for the Acct-Status-Type attribute are listed in Table 9-1.

Table 9-1. New values per RFC 2867 for Acct-Status-Type

Value

Name

Description

Also requires

9

Tunnel-Start

Marks the creation of a
tunnel with another end
point.

User-Name,
NAS-IP-Address,
Acct-Delay-Time,
Event-Timestamp,
Tunnel-Type,
Tunnel-Medium-Type,
Tunnel-Client-Endpoint,
Tunnel-Server-Endpoint,
Acct-Tunnel-Connection

10

Tunnel-Stop

Marks the destruction of a
tunnel with another node.

User-Name,
NAS-IP-Address,
Acct-Delay-Time,
Acct-Input-Octets,
Acct-Output-Octets,
Acct-Session-ID,
Acct-Session-Time,
Acct-Input-Packets,
Acct-Output-Packets,
Acct-Terminate-Cause,
Acct-Multi-Session-Id,
Event-Timestamp,
Tunnel-Type,
Tunnel-Medium-Type,
Tunnel-Client-Endpoint,
Tunnel-Server-Endpoint,
Acct-Tunnel-Connection,
Acct-Tunnel-Packets-Lost

11

Tunnel-Reject

Marks the rejection of an
attempt to establish a
tunnel with another node.

User-Name,
NAS-IP-Address,
Acct-Delay-Time,
Acct-Terminate-Cause,
Event-Timestamp,
Tunnel-Type,
Tunnel-Medium-Type,
Tunnel-Client-Endpoint,
Tunnel-Server-Endpoint,
Acct-Tunnel-Connection

12

Tunnel-Link-Start

Marks the creation of a
tunnel link; for those
protocols that support
multiple links per tunnel.

User-Name,
NAS-IP-Address,
NAS-Port,
Acct-Delay-Time,
Event-Timestamp,
Tunnel-Type,
Tunnel-Medium-Type,
Tunnel-Client-Endpoint,
Tunnel-Server-Endpoint,
Acct-Tunnel-Connection

13

Tunnel-Link-Stop

Marks the destruction of a
tunnel link; for those
protocols that support
multiple links per tunnel.

User-Name,
NAS-IP-Address,
NAS-Port,
Acct-Delay-Time,
Acct-Input-Octets,
Acct-Output-Octets,
Acct-Session-Id,
Acct-Session-Time,
Acct-Input-Packets,
Acct-Output-Packets,
Acct-Terminate-Cause,
Acct-Multi-Session-Id,
Event-Timestamp,
NAS-Port-Type,
Tunnel-Type,
Tunnel-Medium-Type,
Tunnel-Client-Endpoint,
Tunnel-Server-Endpoint,
Acct-Tunnel-Connection,
Acct-Tunnel-Packets-Lost

14

Tunnel-Link-Reject

Marks the rejection of an
attempt to establish a
tunnel link; for those
protocols that support
multiple links per tunnel.

User-Name,
NAS-IP-Address,
Acct-Delay-Time,
Acct-Terminate-Cause,
Event-Timestamp,
Tunnel-Type,
Tunnel-Medium-Type,
Tunnel-Client-Endpoint,
Tunnel-Server-Endpoint,
Acct-Tunnel-Connection

The new tunnel-accounting attributes are integrated with the rest of the RADIUS extensions attributes in the next
section.

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

9.5 New Extensions Attributes

In the familiar (yet repetitive, I know) format of Chapter 2, I will now detail the new attributes offered in RFC 2869,
as well as those specified in the "RADIUS Attributes for Tunnel Protocol Support" (RFC 2868) and "RADIUS
Accounting Modifications for Tunnel Protocol Support" (RFC 2867). They are presented in ascending order of the
attribute number.

Acct-Input-Gigawords

Attribute Number

52

Length

6

Value

INTEGER

Allowed in

Accounting-Request

Prohibited in

Access-Accept, Access-Request, Access-Reject,
Access-Challenge, Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

The value of this attribute is the number of times that the Acct-Input-Octets counter has exceeded and wrapped over
232 since this transaction's inception. It can only be present in Accounting-Request packets where the value of the
Acct-Status-Type is either Stop or Interim-Update.

Acct-Output-Gigawords

Attribute Number

53

Length

6

Value

INTEGER

Allowed in

Accounting-Request

Prohibited in

Access-Accept, Access-Request, Access-Reject,
Access-Challenge, Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

The value of this attribute is the number of times that the Acct-Output-Octets counter has exceeded and wrapped
over 232 since this transaction's inception. It can only be present in Accounting-Request packets where the value of
the Acct-Status-Type is either Stop or Interim-Update.

Event-Timestamp

Attribute Number

55

Length

6

Value

INTEGER

Allowed in

Accounting-Request

Prohibited in

Access-Accept, Access-Request, Access-Reject,
Access-Challenge, Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

This attribute indicates the time at which an event marked by the transmission of an Accounting-Request packet
occurred. The value is represented as an integer in the typical Unix-style time notation: the number of seconds since
January 1, 1970 00:00 UTC.

Tunnel-Type

Attribute Number

64

Length

6

Value

ENUM

Allowed in

Access-Request, Accept-Accept, Accounting-Request

Prohibited in

Access-Reject, Access-Challenge,
Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

This attribute is an enumerated value that indicates the tunneling protocol specified for a particular session. If the
attribute is present in an Access-Request packet, the RADIUS server should read its presence as a hint; it is not
required to honor that request.

The possible values for the Tunnel-Type attribute and their corresponding meanings are listed in Table 9-2.

Table 9-2. Tunnel-Type enumerated values

Value

Tunneling protocol

1

Point-to-Point Tunneling Protocol (PPTP)

2

Layer Two Forwarding (L2F)

3

Layer Two Tunneling Protocol (L2TP)

4

Ascend Tunnel Management Protocol (ATMP)

5

Virtual Tunneling Protocol (VTP)

6

IP Authentication Header in the Tunnel-mode (AH)

7

IP-in-IP Encapsulation (IP-IP)

8

Minimal IP-in-IP Encapsulation (MIN-IP-IP)

9

IP Encapsulating Security Payload in the Tunnel-mode
(ESP)

10

Generic Route Encapsulation (GRE)

11

Bay Dial Virtual Services (DVS)

12

IP-in-IP Tunneling

Tunnel-Medium-Type

Attribute Number

65

Length

6

Value

ENUM

Allowed in

Access-Request, Accept-Accept

Prohibited in

Access-Reject, Access-Challenge,
Accounting-Request, Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

This attribute is an enumerated value that indicates the transport medium to use when creating a tunnel based on a
protocol that can support multiple tunnel types. If the attribute is present in an Access-Request packet, the RADIUS
server should read its presence as a hint; it is not required to honor that request.

The possible values for the Tunnel-Medium-Type attribute and their corresponding meanings are listed in Table 9-3.

Table 9-3. Tunnel-Medium-Type enumerated values

Value

Tunnel Medium Types

1

IPv4 (IP Version 4)

2

IPv6 (IP Version 6)

3

NSAP

4

HDLC (8-bit multidrop)

5

BBN 1822

6

802 (includes all 802 media plus Ethernet "canonical
format")

7

E.163 (POTS)

8

E.164 (SMDS, Frame Relay, ATM)

9

F.69 (Telex)

10

X.121 (X.25, Frame Relay)

11

IPX

12

AppleTalk

13

Decnet IV

14

Banyan Vines

15

E.164 with NSAP format subaddress

Tunnel-Client-Endpoint

Attribute Number

66

Length

3 or more octets

Value

STRING

Allowed in

Access-Request, Access-Accept, Accounting-Request

Prohibited in

Access-Reject, Access-Challenge,
Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

The Tunnel-Client-Endpoint attribute contains the address of the initiator of the tunnel. It's designed to work in
conjunction with the Tunnel-Server-Endpoint and Acct-Tunnel-Connection-ID attributes to provide a way to identify
a specific tunnel for accounting, billing, and auditing functions. If the tunnel is an IPv4 tunnel, then the value of this
attribute is either the FQDN of the initiator end of the tunnel or the dotted-decimal (x.x.x.x) address of the initiator.
If the tunnel is an IPv6 tunnel, the string is either the FQDN as described here or a textual representation of the
address. All other tunnel formats use a tag that refers to local configuration data specific to the medium.

Tunnel-Server-Endpoint

Attribute Number

67

Length

3 or more octets

Value

STRING

Allowed in

Access-Request, Access-Accept, Accounting-Request

Prohibited in

Access-Reject, Access-Challenge,
Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

The Tunnel-Server-Endpoint attribute contains the address of the initiator of the tunnel. It's designed to work in
conjunction with the Tunnel-Client-Endpoint and Acct-Tunnel-Connection-ID attributes to provide a way to identify
a specific tunnel for accounting, billing, and auditing functions. If the tunnel is an IPv4 tunnel, then the value of this
attribute is either the FQDN of the receiving (server) end of the tunnel or the dotted-decimal (x.x.x.x) address of the
receiver. If the tunnel is an IPv6 tunnel, the string is either the FQDN as described here or a textual representation of
the address. All other tunnel formats use a tag that refers to local configuration data specific to the medium.

Acct-Tunnel-Connection

Attribute Number

68

Length

3 or more octets

Value

STRING

Allowed in

Accounting-Request

Prohibited in

Access-Accept, Access-Request, Access-Reject,
Access-Challenge, Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

This attribute defines the identifier assigned to a specific tunnel session. This attribute works in conjunction with
Tunnel-Client-Endpoint and Tunnel-Server-Endpoint to uniquely identify a specific session for accounting, auditing,
and billing purposes. The field encoding for the value of this attribute is implementation specific.

Tunnel-Password

Attribute Number

69

Length

5 or more octets

Value

STRING

Allowed in

Access-Accept

Prohibited in

Access-Request, Access-Reject, Access-Challenge,
Accounting-Response, Accounting-Request

Presence in Packet

Not required

Maximum Iterations

1

This attribute contains the password for authenticating to a remote server and includes a "salt" field that is used to
verify the uniqueness of the key used to encrypt the tunnel password.You can find more information at the RFC
2868, but no sense sending you off on a chase. Here's the relevant part:

The plaintext String field consists of three logical sub-fields: the Data-Length and Password sub-fields (both of which
are required), and the optional Padding sub-field. The Data-Length sub-field is one octet in length and contains the
length of the unencrypted Password sub-field. The Password sub-field contains the actual tunnel password. If the
combined length (in octets) of the unencrypted Data-Length and Password sub-fields is not an even multiple of 16,
then the Padding sub-field MUST be present. If it is present, the length of the Padding sub-field is variable, between
1 and 15 octets. The String field MUST be encrypted as follows, prior to transmission:

Construct a plaintext version of the String field by concatenating the Data-Length and Password sub-fields. If
necessary, pad the resulting string until its length (in octets) is an even multiple of 16. It is recommended that zero
octets (0x00) be used for padding. Call this plaintext P. Call the shared secret S, the pseudo-random 128-bit
Request Authenticator (from the corresponding Access-Request packet) R, and the contents of the Salt field A.
Break P into 16 octet chunks p(1), p(2)...p(i), where i = len(P)/16. Call the ciphertext blocks c(1), c(2)...c(i) and
the final ciphertext C. Intermediate values b(1), b(2)...c(i) are required. Encryption is performed in the following
manner (+ indicates concatenation):
 b(1) = MD5(S + R + A) c(1) = p(1) xor b(1) C = c(1)
b(2) = MD5(S + c(1)) c(2) = p(2) xor b(2) C = C + c(2)

b(i) = MD5(S + c(i-1)) c(i) = p(i) xor b(i) C = C + c(i)

The resulting encrypted String field will contain

c(1)+c(2)+...+c(i)

On receipt, the process is reversed to yield the plaintext String.

ARAP-Password

Attribute Number

70

Length

18

Value

STRING

Allowed in

Access-Request

Prohibited in

Access-Accept, Access-Reject, Access-Challenge,
Accounting-Response, Accounting-Request

Presence in Packet

Not required

Maximum Iterations

1

This attribute is a 16-octet string designed to carry the client's response to mutual authentication of the client and the
RADIUS client machine. The highest-order octets contain the dial-up user's challenge to the RADIUS client, which
consists of two 32-bit numbers totaling eight octets. The lowest-order octets contain the dial-up user's response to
the RADIUS client's challenge. This as well consists of two 32-bit numbers totaling eight octets.

ARAP-Features

Attribute Number

71

Length

16

Value

STRING

Allowed in

Access-Accept

Prohibited in

Accounting-Request, Access-Request, Access-Reject,
Access-Challenge, Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

This attribute, found in Access-Accept packets with the Framed-Protocol attribute set to ARAP, transmits password
data that the RADIUS client machine is responsible for transmitting to the user in an ARAP feature flags packet. The
value is a compound string containing such information as the restrictions on a user for changing his password, the
minimum acceptable password length, the password creation date in Macintosh time (32 unsigned bits representing
seconds since Midnight GMT January 1, 1904), the password expiration delta from the creation date in seconds, and
the current RADIUS server's time in Macintosh format.

ARAP-Zone-Access

Attribute Number

72

Length

6

Value

INTEGER

Allowed in

Access-Accept

Prohibited in

Accounting-Request, Access-Request, Access-Reject,
Access-Challenge, Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

This attribute, found in Access-Accept packets with the Framed-Protocol attribute set to ARAP, indicates how the
ARAP zone list for the user should be interpreted.

The value field is an integer that can be one of three values. The integer 1 signifies that the user should only be
allowed access to the default zone. The integer 2 indicates that the zone filter should be used inclusively—that is, the
user should be allowed to access only the zones listed in his filter. The integer 4 specifies that the zone filter should be
used exclusively—meaning the user should be allowed to access all zones except those listed in his filter.

The Filter-ID attribute must also be present if this attribute's value is set to 2 or 4 in order to name the zone list filter
to which the access flag should be applied.

ARAP-Security

Attribute Number

73

Length

6

Value

INTEGER

Allowed in

Access-Challenge

Prohibited in

Accounting-Request, Access-Request, Access-Reject,
Access-Accept, Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

This attribute is found in an Access-Challenge packet and indicates the ARAP security module that's to be used for
the transaction. The value of this attribute is an integer representing a Macintosh operating system type, which is four
ASCII characters cast as a 32-bit integer.

ARAP-Security-Data

Attribute Number

74

Length

3 or more octets

Value

STRING

Allowed in

Access-Request, Access-Challenge

Prohibited in

Accounting-Request, Access-Accept, Access-Reject,
Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

This attribute contains the actual challenge or response, based on the security model contained in the ARAP-Security
attribute, and is found in Access-Request and Access-Challenge packets.

Password-Retry

Attribute Number

75

Length

6

Value

INTEGER

Allowed in

Access-Reject

Prohibited in

Accounting-Request, Access-Request, Access-Accept,
Access-Challenge, Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

This attribute, which can be found in Access-Reject packets, indicates the number of authentication attempts a user is
allowed before he is disconnected. This attribute is used primarily with the ARAP protocol.

Prompt

Attribute Number

76

Length

6

Value

INTEGER

Allowed in

Access-Challenge

Prohibited in

Accounting-Request, Access-Request, Access-Reject,
Access-Accept, Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

This attribute, found only in Access-Challenge packets, tells the RADIUS client box party to the transaction whether
to echo the user's response as entered by the user or whether to cease the echo. If the value of this attribute is 0, the
input will not be echoed. If the value is 1, the input will be echoed.

Connect-Info

Attribute Number

77

Length

3 or more octets

Value

STRING

Allowed in

Access-Request, Accounting-Request

Prohibited in

Access-Challenge, Access-Reject, Access-Accept,
Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1 in an Access-Request packet; unlimited in an
Accounting-Request packet

The RADIUS client gear will send this attribute inside an Access-Request or Accounting-Request packet to indicate
the properties and nature of this user's connection. Among the data points collected are connection speed, transmit
speed, receive speed, and any other optional information. More than one of these attributes is allowed in the
Accounting-Request packet to satisfy increasing ITU pressure to allow more modem information to be transmitted
that may exceed 252 octets.

Configuration-Token

Attribute Number

78

Length

3 or more octets

Value

STRING

Allowed in

Access-Accept

Prohibited in

Accounting-Request, Access-Request, Access-Reject,
Access-Challenge, Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

This attribute is designed to be sent from a RADIUS proxy server to a RADIUS proxy client inside an
Access-Accept packet in large, distributed networking architectures. It serves to designate which user profile to use.
The value field is implementation dependent and should be read as undistinguished octets.

EAP-Message

Attribute Number

79

Length

3 or more octets

Value

STRING

Allowed in

Access-Accept, Access-Reject, Access-Challenge,
Access-Request

Prohibited in

Accounting-Request, Accounting-Response

Presence in Packet

Not required

Maximum Iterations

Unlimited in Access-Request and Access-Challenge
packets;1 in Access-Accept and Access-Reject packets

This attribute serves as the method by which EAP messages are transmitted within a RADIUS packet. The RADIUS
client machine places all of the messages received from the client into individual EAP-Message attributes and wraps
them into a standard Access-Request packet. The RADIUS server then returns EAP messages in Access-Challenge,
Access-Accept, and Access-Reject messages.

The Message-Authenticator attribute (detailed a bit later in this chapter) is required to be present if this attribute is
used; this is to protect the integrity of RADIUS over EAP to the same degree that EAP affords transactional integrity
on its side of the link. The Message-Authenticator must be used to protect all Access-Request, Access-Challenge,
Access-Accept, and Access-Reject messages which hold one or more EAP-Message attributes.

Message-Authenticator

Attribute Number

80

Length

18

Value

STRING

Allowed in

Access-Request, Access-Challenge, Access-Accept,
Access-Reject

Prohibited in

Accounting-Request, Accounting-Response

Presence in Packet

Required in Access-Request, Access-Accept,
Access-Reject, or Access-Challenge packets that
contain EAP-Message; otherwise, not required

Maximum Iterations

1

The Message-Authenticator attribute is used to sign packets to ensure their integrity is protected. The attribute may
be used in any Access-Request, but any packet that contains EAP-Messages must also have the
Message-Authenticator attribute present. The Message-Authenticator itself is an HMAC-MD5 checksum of the
entire Access-Request packet, containing the Type, ID, Length, and Authenticator field, using the shared secret as
the key.

As mentioned earlier in the text, some RADIUS client machines calculate the Message-Authenticator incorrectly,
while others use the same attribute values for different purposes. Of course this creates a mess. It's also important to
note that the use of the IPsec protocol really makes this a stopgap measure. When IPsec implementation becomes
more widespread, this attribute will be made redundant.

Tunnel-Private-Group-ID

Attribute Number

81

Length

3 or more octets

Value

STRING

Allowed in

Access-Request, Access-Accept

Prohibited in

Accounting-Request, Access-Reject,
Access-Challenge, Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

The Tunnel-Private-Group-ID attribute designates the group ID value for a specified tunneling session. Private
groups are used to associate configured tunnels with specified groups of users. The value of the field is unrestricted
and can be configured in whatever way a specific implementation requires.

Tunnel-Assignment-ID

Attribute Number

82

Length

3 or more octets

Value

STRING

Allowed in

Access-Accept

Prohibited in

Accounting-Request, Access-Request, Access-Reject,
Access-Challenge, Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

This attribute is designed to specify which pre-configured tunnel a particular connection should use. More specifically,
some tunnel protocols allow for multiplexing multiple connections across one specific tunnel, and with this attribute,
RADIUS can inform the initiator (the client, in other words) whether the connection will be over an individual tunnel
or a multiplexed tunnel.

There are specific behaviors a tunnel initiator should follow when using the Tunnel-Assignment-ID attribute:

•

If a tunnel exists between the specified end points with the designated assignment ID, then the session should
use that tunnel.

•

If no tunnel exists between the specified end points with the designated assignment ID, then a new tunnel
should be created and referred to as the label indicated in the Tunnel-Assignment-ID value.

•

If the Tunnel-Assignment-ID attribute is not present, then the session should be assigned to an unnamed
tunnel. If this tunnel doesn't exist, it should be created and used for all sessions that don't have the
Tunnel-Assignment-ID attribute.

Tunnel-Preference

Attribute Number

83

Length

6

Value

HEX

Allowed in

Access-Accept, Access-Request

Prohibited in

Accounting-Request, Access-Reject,
Access-Challenge, Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

This attribute indicates the preference assigned to each tunnel when more than one set of tunneling attributes is
returned by the RADIUS server to the client initiator. The value of this attributes ranges from 0x01 through 0x1F,
with the lowest value receiving the highest preference and the highest value receiving the lowest preference.

ARAP-Challenge-Response

Attribute Number

84

Length

10

Value

STRING

Allowed in

Access-Accept

Prohibited in

Accounting-Request, Access-Request, Access-Reject,
Access-Challenge, Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

This attribute, found in Access-Accept packets with a Framed-Protocol attribute set to ARAP, contains the
response to the dial-in client's challenge. The value is an eight-octet response to the client challenge, calculated by
performing DES encryption on the highest-order eight octets of the ARAP-Password attribute's value, using the
user's password as the key.

Acct-Interim-Interval

Attribute Number

85

Length

6

Value

INTEGER

Allowed in

Access-Accept

Prohibited in

Accounting-Request, Access-Request, Access-Reject,
Access-Challenge, Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

The value of the Acct-Interim-Interval attribute indicates the number of seconds between each transmittal of an
interim update for a specific session. The value cannot be less than 60, and best practices reveal that the value of this
attribute really has no benefit to being less than 600. Serious increases in network traffic that can adversely affect
performance can occur if this value is incorrectly or inefficiently set.

Acct-Tunnel-Packets-Lost

Attribute Number

86

Length

6

Value

INTEGER

Allowed in

Accounting-Request

Prohibited in

Access-Accept, Access-Request, Access-Reject,
Access-Challenge, Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

The value of this attribute is the number of packets that have been lost over a given link.

NAS-Port-ID

Attribute Number

87

Length

3 or more octets

Value

STRING

Allowed in

Access-Request, Accounting-Request

Prohibited in

Access-Challenge, Access-Reject, Access-Accept,
Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

The value of this attribute, read from textual characters encoded with UTF-8, indicates the physical port on the NAS
machine to which to a user is connected. It is only found in Access-Request and Accounting-Request packets.

Framed-Pool

Attribute Number

88

Length

3 or more octets

Value

STRING

Allowed in

Access-Accept

Prohibited in

Accounting-Request, Access-Request, Access-Reject,
Access-Challenge, Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

This attribute, found only in Access-Accept packets, indicates the name of the address pool that should be used to
give an address to the authenticating user.

Tunnel-Client-Auth-ID

Attribute Number

90

Length

3 or more octets

Value

STRING

Allowed in

Access-Request, Access-Accept, Accounting-Request

Prohibited in

Access-Reject, Access-Challenge,
Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

The Tunnel-Client-Auth-ID attribute designates the name of the initiator that was used during the creation of a tunnel
in the authentication phase. It should be included in Access-Accept where the default authentication name is not
sufficient or otherwise undesired.

Tunnel-Server-Auth-ID

Attribute Number

91

Length

3 or more octets

Value

STRING

Allowed in

Access-Request, Access-Accept, Accounting-Request

Prohibited in

Access-Reject, Access-Challenge,
Accounting-Response

Presence in Packet

Not required

Maximum Iterations

1

The Tunnel-Server-Auth-ID attribute designates the name of the receiver (the server) that was used during the
creation of a tunnel in the authentication phase. It should be included in Access-Accept where the default
authentication name is not sufficient or otherwise undesired.

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

Chapter 10. Deployment Techniques

It's the do-or-die moment: it's time to deploy your AAA infrastructure. That infrastructure most likely takes the form
of one or more RADIUS servers (otherwise you would probably not be reading this book). This chapter is designed
to cover many of the inevitable questions that come up with regard to designing a plan to deploy RADIUS servers.

First, I'll look at configuring the typical services that are offered by ISPs and corporations to their clients and then
broaden that to cover extended services that support other business models. Next, I'll discuss how to maintain the
service by designing a secure, highly available network. Following that are two case studies of RADIUS
implementation design. Finally, I'll provide information about other RADIUS servers, available documentation, and
other resources you can use to support your RADIUS operation.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

10.1 Typical Services

As you've learned from the chapters on FreeRADIUS, the users that connect through your RADIUS server must be
either configured into the users file for the RADIUS server itself or known by a remote system with which the initial
RADIUS server can communicate. Anything else falls into the default connection configuration, which is sometimes
known as the "catchall." Most implementations have a generic configuration that is meant for most users and a few
user-specific configurations sprinkled about. In the following sections, I will provide examples of both scenarios
whenever appropriate.

10.1.1 System Shell Accounts

The shell account, a popular service 5 to 10 years ago but less so now, is a unique type of connection that allowed
access to the command line of a remote server. Users would dial in to some NAS gear, which would open a channel
to the remote "shell server," and it would then prompt the user for authentication information. Assuming he provided
proper credentials, the user was authenticated, got a shell prompt on the remote machine, and the NAS acted as the
pass through from the client to the server. That's an important distinction, since with shell accounts the user is not
provided with a direct IP address for the remote network. Since he doesn't have his own IP, he must talk with a
system that does in this scenario.

There are two common types of protocols used to connect to shell accounts on machines: Rlogin and Telnet. Rlogin
was more popular, since it was the most configurable of the two, but Telnet is more secure. The RADIUS server,
however, must be prepared to support both protocols. An example configuration stanza from the RADIUS users file
for shell account access is listed in Example 10-1.

Example 10-1. RADIUS configuration for shell accounts
 Jonathan
 Service-Type = Login,
 Login-Service = Telnet,
 Login-IP-Host = 172.16.1.37

Anna
 Service-Type = Login,
 Login-Service = Rlogin,

 Login-IP-Host = 172.16.1.38

Of course, you can default the configuration—meaning all users will use the same configuration, with Rlogin—by
using the excerpt shown in Example 10-2.

Example 10-2. Default shell account configuration
 DEFAULT
 Service-Type = Login
 Login-Service = Rlogin,

 Login-IP-Host = 172.16.1.38
10.1.2 Direct Connect Accounts

Today, you'll find most ISPs provide direct connect accounts using a framed remote access protocol such as SLIP or
PPP. With these accounts, the connecting user is assigned an IP address (or, in the case of static IP addresses,
allowed to use an address) on the remote network, so that she may function like an actual node on that network.

SLIP and PPP are both available for these kinds of connections, although usually PPP is used now, since it has many
benefits: it is better supported, more robust, and has quite a few link negotiation features that SLIP just doesn't have.
Example users file configurations are shown in Example 10-3.

Example 10-3. RADIUS configuration for direct connect accounts
 Jonathan Password = UNIX-PW
 Service-Type = Framed,
 Framed-Protocol = SLIP,
 Framed-IP-Address = 255.255.255.254,
 Framed-IP-Netmask = 255.255.255.0,
 Framed-Routing = None,
 Framed-MTU = 1500,
 Framed-Compression = Van-Jacobson-TCP-Header

Anna Password = UNIX-PW
 Service-Type = Framed,
 Framed-Protocol = PPP,
 Framed-IP-Address = 255.255.255.254,
 Framed-IP-Netmask = 255.255.255.0,
 Framed-Routing = None,
 Framed-MTU = 1500,
 Framed-Compression = Van-Jacobson-TCP-Header

DEFAULT Password = UNIX-PW
 Service-Type = Framed,
 Framed-Protocol = PPP,
 Framed-IP-Address = 255.255.255.254,
 Framed-IP-Netmask = 255.255.255.0,
 Framed-Routing = None,
 Framed-MTU = 1500,

 Framed-Compression = Van-Jacobson-TCP-Header

Note that both users are assigned dynamic IP addresses, presumably from a DHCP-compatible device. In fact, the
PPP configuration stanza for user Anna and the default configuration specifically request the NAS to assign an IP
address (this was covered in Framed-IP-Address attribute section in Chapter 3). But you, as an ISP, may provide a
service for static IP usage. Or you, as a corporate IT administrator, may have deployed remote corporate
applications that require a client to have a static IP address. In this case, the static IP address desired is simply
specified in the Framed-IP-Address attribute in the appropriate section in the users file, as shown in Example 10-4.

Example 10-4. Assigning a static IP address to user Jonathan
 Jonathan Password = UNIX-PW
 Service-Type = Framed,
 Framed-Protocol = PPP,
 Framed-IP-Address = 66.26.224.45,
 Framed-IP-Netmask = 255.255.255.248,
 Framed-Routing = None,
 Framed-MTU = 1500,

 Framed-Compression = Van-Jacobson-TCP-Header

Alternatively, you may have a user who requires access from her corporate laptop with a static IP, but she may also
want to dial in from a home computer to access the Internet. In this case, you can set up the appropriate
configurations very easily. You simply add the Access-Request's protocol as an item to check in the different stanzas
in the users file for the designated user, as shown in Example 10-5.

Example 10-5. Maintaining multiple connection configurations
 Anna Password = UNIX-PW, Framed-Protocol = SLIP
 Service-Type = Framed,
 Framed-IP-Netmask = 255.255.255.0,
 Framed-Routing = None,
 Framed-MTU = 1500,
 Framed-Compression = Van-Jacobson-TCP-Header

Anna Password = UNIX-PW, Framed-Protocol = PPP
 Service-Type = Framed,
 Framed-IP-Address = 66.26.224.45,
 Framed-IP-Netmask = 255.255.255.248,
 Framed-Routing = None,
 Framed-MTU = 1500,

 Framed-Compression = Van-Jacobson-TCP-Header

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

10.2 RADIUS and Availability

High availability has become the latest buzzword in Internet service. Advertisements abound for network operation
centers (NOCs) with triple-capacity electric generators, dual HVAC systems, geographical dispersion, waterless
combustion control, and other facilities to handle problems. While these certainly are methods to obtain and retain
high availability, it seems that sometimes people lose sight of the point of such exercises: to maintain the existence and
offering of services when others systems on all "sides" of the service are failing. I say "sides" to refer to the
hierarchical tree in which most systems reside: there are often machines relying on a specific box, and that box relies
on other boxes, and it also may work in tandem with others.

There are several strategies for planning for failure, which is the main tenet in high availability. The one most
disaster-planning experts use is to account for what would be a worst-case scenario for your implementation. There
are several questions to ask yourself when designing a highly available system:
 Am I familiar with the normal traffic and availability of my systems?

Am I aware of the inherent weaknesses my implementation has? You need to know what the normal behavior of
your system is when deciding how best to concentrate your efforts to make it available.
 Do I have a single point of failure in my network?

That is, is there one device that provides such critical service that if it went down, users could not obtain the service
they need? Single points of failure are disastrous to all kinds of redundancy because they make it moot: if your system
goes down, it's completely unavailable.
 What events could coincide that would overwhelm the capacity of my network?

This scenario often comes into play when a downed system that is not part of the implementation causes certain
events to happen inside the system. You'll see more of this later in the chapter.
 How can I eliminate single points of failure?

Would several systems performing the same task as the same time (a cluster) cure this ailment? Conversely, what
systems can fail without bringing down the entire network? Prioritizing the systems to which you apply availability
strategies helps you keep the cost in check while ensuring the greatest possible uptime for your system.
 How can I be proactive about reducing errors and outages?

It should be no surprise to an administrator that most errors considered catastrophic to a network are the cause of
events that have been long in the making. Monitoring your systems for potential errors and their indications help to
ensure problems are handled and eliminated before they even become problems.

These questions give you a fairly complete estimate of your implementation's weak points, both inside and outside of
your control. Let's step through each of the questions with regard to designing a RADIUS implementation.

10.2.1 Determining Normal System Behavior

To establish a proper and accurate baseline for your system, there are two types of requirements you need to
consider: explicit requirements, which are those mandated by your users or your company's management; and
derived (or implicit) requirements, which mainly stem from the explicit requirements. For example, you may be
required to make all reasonable efforts to have service restored within 15 minutes of downtime. The 15-minute
window is an explicit requirement. However, you may also require that your systems have hot-swap hard drives so
that you can indeed switch out a dead disc within 15 minutes. Your hot-swap requirement is derived from the explicit
requirements.

Let's take a look at each of these now.

10.2.1.1 Explicit requirements

Some RADIUS implementations must deal with a constant, heavy stream of users needing its services. In this case, a
measurement called packets per second is used, which quite obviously is a threshold of how many packets per
second can be received and processed by the server systems. A few calculations are in order to determine what this
qualification should be.

1.

First, determine the number of packets that will be processed in order to start and stop one transaction. In
RADIUS, this involves four packets to start the transaction and two to stop it.

2.

Next, consider the average load of your system. For this example, say you have a capacity of 12,000 ports.
Assume that normal operating load is about 40% of capacity, which means that 4,800 ports are in use. At
peak times you may have 85% of your user base connected, which means 10,200 ports in use.

3.

Then factor in a contingency for a primary circuit to go bad. Let's assume a circuit goes bad at a peak usage
time, which can cause a maximum 10,200 accounting-stop packets to filter through your implementation (a
worst-case scenario).

Can you handle that? It may seem like a simple question, but it's one that must be answered. It's also important to
consider the number of packets per transaction, as you may be faced with a "transactions per second" constraint. In
this case, RADIUS call-check may be used, which can cause more packets to constitute a single transaction. Of
course, each implementation is different, so careful consideration of your environment and what your requirements
are is prudent.

Some administrators believe that the primary factors in designing these systems are, of course, availability and
response time. Consider the effect of a slow system: if a server is under heavy load, it will take a while to respond to
a request. The client system will probably send the message again after a timeout period, which adds another packet
to the load. You can begin to see the cascading effect of packet load, which likely will ultimately result in a system
crash.

Another requirement to consider is the average time between system failures, or the MTBF factor. You may be
familiar with this statistic from its presence on nearly all hard disc drives. For smaller RADIUS setups, in which
downtime is measured in under one thousand minutes per year (close to 17 hours), then MTBF may not be as
important a measure as more active monitors like packet per second and MTRS (more on that later). For larger
providers, however, a figure on acceptable MTBF should be determined as part of a high-availability plan. A
common figure for which companies strive is 99.999% uptime. Most systems administrators install some sort of
real-time monitoring system for their systems, but the key to maintaining five-nines is tackling problems before they
become problems, per se. Diligence in examining log files and using accounting data to plan and analyze usage trends
should both be part of a disaster-prevention plan. However, the techniques established in this chapter aren't meant to
provide for five-nines uptime. Designing for that level of availability requires consultants and expensive equipment.

Finally, while examining explicit requirements to high availability, we have to admit that all systems are going to fail at
some point. There is no such thing as 100% uptime over any practical, meaningful length of time. The mean time to
restore service, or MTRS, figure looks at how long it takes you or your systems to recover from an outage. This
could be the most critical aspect of all of your requirements. Customers can tolerate some downtime, and few
businesses run operations so important that any downtime is a catastrophic nightmare. But your customers, fellow
employees, vendors, and partners will all scream if an outage is prolonged. It's likely your company earns more
brownie points responding to problems quickly than it does ensuring no downtime occurs.

There are a few ways to minimize the time it takes to restore service. With hardware, it is always good practice to
keep hot spares of critical components around: hubs, switches, routers, hard drives, processors, memory, and disk
controllers are all parts with limited (albeit long) lives. It's also advisable to keep copies of critical system software,
including the operating system and your RADIUS implementation software, close to machines on which they're
installed. Regular data backups—and perhaps even more importantly, regular test restorations—should be
conducted. Remember: the value of a backup is reduced to zero if it cannot be restored.

10.2.1.2 Derived requirements

The processing power of your server is one requirement that can be mandated by a threshold or directive set to
maintain service availability. For example, if you need to process 25 packets per second, you require a fairly
powerful server. But there may be a better solution to increase your power: since you have multiple POPs separated
around a state but your RADIUS servers are in one main location, then you may investigate using several systems in
parallel and building a RADIUS server cluster.

Network connectivity is also another under-compensated area. With heavy loads of traffic, it's critical to ensure your
network connections are rock solid. Quality server-based network interface cards (NICs) from tier-1 manufacturers
like 3Com and Intel are a must in this situation, and in most cases another NIC bound to another IP for the same
machine will allow the box to spread the traffic load over the two cards. Additionally, if one dies, the other can still
handle traffic and serve as an online backup until a new card can be installed.

10.2.2 Points of Failure

TechWeb's TechEncyclopedia defines redundancy as "...peripherals, computer systems and network devices that
take on the processing or transmission load when other units fail." More granularly, redundancy is the inclusion of
independent yet identical sets of components to provide an alternate way of providing a function. The concept of
redundancy can be applied to individual computers, sets of computers, networks, and even entire implementation
design. Moreover, systems can be as redundant as needed; as with everything, however, there is a "happy medium."

I should discuss certain terminology in regard to redundancy before proceeding further. A technique to balance and
distribute loads across servers working in tandem is called a "round robin" strategy. For example, let's say I have
three RADIUS servers in one POP. The NAS is configured to send calls in order to one of the three RADIUS
servers; the mentality behind this is that the traffic load will be evenly placed among the three servers by choosing the
next available server in the "list" upon dial-in so that no one server is operating under a much heavier load than the
others.

Secondly, "failover" is a term used to describe when an administrator has ensured service availability by enabling a
service to cut over to another standby server when a primary server fails. This is most commonly found in groups of
two servers in one geographic location, such as a particular POP in a city. There may be two RADIUS servers, for
example: one configured to handle all of the requests normally and another to take over the duties if the first fails.
Hence, the RADIUS service "fails over" to the backup server. (It's been known, however, for fail-over systems not
to resume back to the normal servers when the failure condition is resolved. This can inadvertently direct large
amounts of traffic to your failover servers, which might not be designed to handle such a load. It's something to be
aware of.)

Redundancy is often found inside specific pieces of hardware, particularly servers. Most industrial-strength servers
include the capability, if not the hardware, to maintain redundancy in critical machine subsystems: power, processors,
and controllers. In most cases, the computer's BIOS will detect a failure of a critical component within milliseconds
and automatically cut over to the auxiliary device, which is already installed in the machine's chassis. This is one of the
benefits you receive for paying extra money for a standard server-class system instead of commissioning a regular
personal computer.

Hubs and switches are also critical devices that are often overlooked. Ports on these devices can suddenly fail,
leaving you without any connectivity to your machine. Unfortunately, switches and other concentrators designed for
heavy use in a datacenter are often very expensive, so you must weigh the benefit of keeping an identical spare switch
on site. Ideally, your machine will have two network cards present that are connected to two separate switches. This
eliminates two probable points of failure: the port on a switch (or the entire switch, in the event of a power loss to a
rack or a unit) and the NIC inside the chassis. This is cheap insurance and not very difficult to configure.

There is an issue to consider with the dual-NIC approach, however. You must have a way to route traffic between
both cards. Otherwise, when one card (or concentrator port) fails, your traffic routes will fail to switch over to the
functioning interface. This phenomenon is known as "convergence failure." To cure this, run a routing daemon such as
gated across all of your interfaces. Another problem that tends to creep up is managing IP addresses. These
numbers often change, and this can create havoc for system administrators trying to announce and provide these
numbers to the public. It also creates issues with proxy servers and other systems that see your servers as clients. To
absolve the renumbering issue, use virtual loopback addresses. These function as aliases to your real address so that
your public customers and other remote clients can use these numbers to reach your system no matter what
numbering it uses.

10.2.3 Planning to Fail

Having multiple servers ready to take over in case of failure is one of the most effective ways of combating downtime.
Unfortunately, having multiple servers increases the total cost of ownership of the entire implementation, and many
times management may want to increase availability but at the same time spend as little money as possible. However,
budgeting for high availability systems is much like budgeting for any type of insurance, whether business or
personal—you pay money up front for the time you will need it, but when you need it, you need it badly.

A fellow author and systems designer/administrator once told of the concept of building for failure. I find that a
healthy attitude to take. Companies often build technology infrastructures involving systems critical to their
day-to-day operation and then later discover the need for fault tolerance and uptime increase. Renovating an existing
implementation to conform to strict availability standards is extremely expensive. However, up-front planning reduces
much of this cost, and allows you to take high availability to a level that otherwise may have been cost prohibitive.

There are a few different levels, or "temperatures," of high availability (HA), ranging from inexpensive and least timely
to most expensive and instantaneously available. It's easiest to delineate these temperatures into three groups, but that
distinction made here should not be treated as a statement that other combinations of HA systems are not available.
In fact, combinations are often necessary because of unique infrastructures and system peculiarities. The point of HA
is to strategize your network layout and design to plan for every malicious network event and minimize downtime as
much as possible.

Cold standby servers offer the least protection from outages, but they are also the most cost-effective standby
systems. Most often, the cold standby RADIUS server is actually a box performing another network duty (SMTP
service, for example), but the administrator installs and configures the RADIUS server software on that machine and
then shuts the service down. The problem with cold servers is that the administrator must know there is a problem
with the primary servers, and he must actually perform the cutover to the standby server manually. While it's not
expensive at all to keep a cold standby around, it provides very limited failover services and maximum uptime during
an outage.

The next step up on the availability thermometer is a warm standby server. Warm standby servers are most likely
identical to the primary, in-service machines both in hardware configuration and software maintenance. However,
these servers are powered on and able to take over service for a primary server should it go down in a matter of
seconds. Software APIs residing on both machines normally can make and receive calls to determine when the
standby server should take over duties from the active server.

Hot standby servers are the most expensive and most effective way to ensure your implementation has the most
uptime possible. Hot backups generally run the system software actively, which means a method of synchronization is
present between the active and standby servers to make sure session information and real-time data is mirrored
between the two. However, the standby server is not contacted unless all primary servers have gone offline or are
otherwise unable to perform service.

10.2.4 Proactive System Management

An equally important part of maintaining a RADIUS implementation with the least downtime possible is keeping up
with your system and examining it on a daily (or sometimes even more often) basis. There is a glut of monitoring tools
on the market now, and there are as many freely available open source tools that can be had for the simple price of
compilation and configuration. Most of these tools profile various metrics of your system in two key areas: service
statistics and system statistics.

Service monitoring is designed to see two things: whether the service is functional, period, and then what kind of load
under which the service is operating. The most effective way to test the first tenet is to have a packet generator send
RADIUS packets emulating an incoming NAS connection. If a response is received from the RADIUS server, I
know it's operating. Beyond that, I want to see some statistics about the environment in which the service is being
provided.
 Logons per second

This statistic measures the number of successful authentications (through counting the number of Access-Accept
packets) per second through your system. You can also monitor the start type of Accounting-Request packets,
although you lose the ability to see the reject ratio: how many requests were granted to every reject.

Look for: abnormally high counts for this statistic. This would indicate a general network problem that would
disconnect a user. He'd then attempt to reconnect, sometimes multiple times, increasing this counter and indicating a
problem that needs attention.

Also: abnormally low counts. This could indicate a network problem.
 Logoffs per second

This metric counts the number of disconnects per second from your system by counting the stop-type
Accounting-Request packets.

Look for: abnormally high numbers. It would indicate a mass network problem, a faulty NAS port, a problem with a
circuit, or a bad remote-access card.

Also: abnormally low counts. This could indicate an accounting problem, a monitoring (SNMP) problem, or an idle
timeout problem.
 Rejects per second

This number monitors the amount of rejected authentication attempts per second. Coupled with smart NAS
equipment, which often includes the suspected motive behind the disconnect, you can often apply logic to certain
disconnect types and determine a problem from there.

Look for: abnormally high counts. This would indicate a problem with the local user authentication database. It also
may point to a problem with a remote machine's database if the RADIUS server(s) is/are acting as a proxy.
 Reject cause threshold

You may decide to create and track the suspected reasons for disconnect. Then your monitoring software can
increase the count for each type of disconnect as the logoff occurred, and when a certain type of disconnect reached
a certain count, you would be alarmed. This is an ideal form of proactive management, in that this threshold can be
set before a minor problem turns into a major one.

Look for: high abnormal disconnects. You also may want to investigate if your monitoring software has this feature
embedded or included.
 Total packets per second, across all interfaces

Sniffing your network interfaces and counting the packets can determine this metric. It's worth the trouble, since
packets per second is a great way to monitor your performance under a known and expected load. It's also useful
for historical mapping and trend analysis.

Look for: higher than normal counts. This may indicate problems such as high load, abnormal disconnects, and other
difficulties which would entail packet "flooding."

Also: abnormally low counts. This could indicate a network problem, an accounting problem, or a monitoring
(SNMP) problem.

The same strategies for service monitoring can be applied to monitoring the health and activity of the hardware on
which the service runs. It's important to determine a baseline with these metrics, as with any other metric, since the
thresholds to which you want an alarm must be set at 25%-30% above your normal system activity tolerance. Here
are a few key aspects of your system that need to be checked often.
 Load average

The load average depicts the average load over an entire system. On Unix machines, the load average can be
determined from simply running a utility from the command line. It's important to remember that the load average
most affects multiple processor machines: common practice shows that the load on a dual SMP system should never
exceed 1.0 for an appreciable length of time.

Look for: an average significantly above your baseline; a load in excess of 1.0 for more than one hour at a time on a
dual CPU system or proportionally larger on a larger multiprocessor system. These tend to indicate bottlenecks in
your system, zombie processes, and other maladies that need to be addressed.
 Memory statistics

Profiling memory usage is a trick that requires forays into more gray areas than the other metrics. Memory usage is
relative, in that highly loaded RADIUS servers can use more memory and be within acceptable tolerances than lightly
loaded servers. The different RADIUS servers in use, coupled with the various methods of holding packets and
configurations in memory, prevent anyone from determining a single threshold at which memory use becomes
rampant and detrimental. It's unique to each machine.

A better way to track memory usage is to correlate your measurements over a period of time with some of the other
service metrics, such as total packets per second or logons per second, and another system metric, such as the load
average. Over a period of three or four weeks you can begin to determine what an average load requires of the
memory in your system.

Memory-use methods should also be analyzed. Unix and Unix-based operating systems will, by design, consume
almost all of the available memory for a particular system. However, the way it uses this RAM most efficiently is by
making it available as buffers. If the usage of a machine is primarily for buffers, than all is well. Any decent
memory-usage utility will depict the current style of usage for a machine's memory.

Look for: an appropriate threshold for your machine. This can be determined, as mentioned previously, with time and
base points on other metric. Servers saddled with 1 GB of RAM can approach 80% memory usage with more ease
and less trouble than boxes equipped with 128 MB of RAM. Throwing memory at a machine is a cheap way to
alleviate a usage problem, but you may want to examine other aspects of your system to determine if there is a
memory leak or improper memory management in a running process.
 Disk Usage

While disk space is getting cheaper by the minute in this day and age, it still makes sense to examine whether the
space you already have is being used wisely. Accounting servers are notorious for accumulating gluts of information,
although large user databases can occupy much space on RADIUS servers only handling authentication and
authorization.

Look for: abnormally high disk-usage growth, particularly after a configuration change. Consider redundant disk
arrays for extra space and added reliability and security. Also, for Unix and Linux machines, examine your partition
structure, and ensure your logs and other files that need room to grow are placed on partitions with ample space.
 Processes

Some monitoring systems watch processes at certain intervals, as scheduled by the Unix commands at or cron. You
will want to monitor the critical processes for your server, which can depend on the software being used.

Look for: critical processes that are stopped or "zombied"; a high number of automatic alarm-restarts from your
monitoring program. These events can indicate a configuration problem with your software or operating system or
abnormally high loads.

10.2.5 Case Studies in Deployment and Availability

Once you've focused on securing the availability of your hardware and software through redundancy, you should
examine making the entire RADIUS service as a whole more available. It's important to remember, however, that
consultants who specialize in designing a network topology to be highly available make six-figure salaries doing just
that, so to present every opportunity to make a system highly available is beyond the scope of the concept here. Like
all plans for failure, you as the designer must strive to reach the "sweet spot" between cost and results.

In that spirit, I'll present two example network topologies that accomplish the most redundancy and availability
without breaking the bank. I will cover the availability and redundancy strategies used in each design; then, you can
take the best practices outlined here and use them as a starting point for your own design. And remember, part of
being a designer is knowing when to bring in the big guns: don't be afraid to call a consultant if you realize that you're
in over your head. It would simply be a waste of time, money, and system resources to continue at that point.

10.2.5.1 Scenario 1: A small, regional ISP

Raleigh Internet, Inc., is a small Internet service provider operating within the Research Triangle Park region of North
Carolina. The provider offers service to residents of the region and the surrounding counties. Raleigh Internet has
created points of presence in three locations: at its head office in Durham, with 1,000 ports; in a co-located telco
area in Chapel Hill, with 1,500 ports; and a rented set of 2,500 ports from a network conglomerate to serve the
Raleigh city proper. Their average user load is 35% on each POP, for a total active port count under normal load of
1,750 ports. They wish to provide as much service availability as possible, but the budget is certainly not unlimited
and 99.999% uptime is not an explicit requirement. The ISP does need to maintain support for processing at 90%
load (4,500 ports) across all its POPs without problems.

The company maintains a single set of RADIUS servers in its Durham office, along with its arsenal of other service
machines for mail, personal web pages, Usenet, and additional services. It doesn't want to maintain separate
RADIUS servers able to perform authentication on their own at each POP because of the administrative overhead
involved in change management: for example, what if a user in Raleigh changed his password and then went to work
in Chapel Hill? How would the password change propagate from the Raleigh machine to the Chapel Hill server? In
addition, Raleigh Internet needs to maintain the ability to continue to authenticate users in the event one server goes
down.

The solution for Raleigh Internet would look something like the topology depicted in Figure 10-1.

Figure 10-1. An availability solution for a small ISP

In this network design, each POP maintains two RADIUS machines that act solely as a proxy. The proxy servers are
configured to send packets to the main RADIUS machines at the Durham office. The Durham office contains three
RADIUS servers working in tandem with a real copy of the authentication database. Having the database on a single
cluster of machines makes change management and propagation issues less of a problem. This solution also allows
for the contingency of a RADIUS server in each POP going down: the remaining servers can still proxy to the cluster
of real servers in Durham and continue processing AAA requests.

The ISP decided against having real servers in each POP for two reasons: one, it didn't want to invest in expensive
programming and consulting expenses to rectify the propagation problems. The benefits of having five-nines uptime,
at least to management, were not worth the cost of ensuring more availability, since most of Raleigh Internet's
customer base is in the residential market. Their customers didn't demand such uptime requirements since having
access to the Internet wasn't mission critical.

In summary, here are the key strategies involved with this scenario:
 Determining a system baseline

The nominal active load of 1,750 ports system-wide was calculated.
 Managing explicit and derived requirements

The ISP needs to be able to service 4,500 active ports at a maximum across all POPs without any special
modifications. This entails having machines capable of handling such a heavy load. Hence, the three-machine cluster
was specified at the Durham central office. As well, proxies at each POP ensured immediate attention to new and
existing connections.
 Analyzing risks of single points of failure

Since in the original design, if the RADIUS server in the Durham office went down, nothing could authenticate, the
cluster was added to maintain service. As well, dual servers at each POP that work in failover mode (i.e., a primary
and a backup server) ensure if one proxy goes down, requests can still funnel to the central office.

10.2.5.2 Scenario 2: A corporation with branch offices

Acme Machine Tools, LLC, is a midsize manufacturer of shop automation and general construction equipment with
just over 2,000 employees. Acme has a main office in Chicago, with three branch offices in Tempe, Dallas, and
Birmingham. The company has NAS gear in Tempe, Dallas, and Birmingham, each with 500 ports and a nominal
active port load of about 75 ports. The company would like to support a 98% maximum load at each POP (490
ports each), for a maximum system-wide load of 1,470 active ports. The company has hired RADIUS administrators
for each POP as well as one for the corporate office.

Acme wants to create a service that will allow its employees in the corporate offices to work from home and gain
access to the corporate network by dialing in to each city. It also has a fleet of mobile workers that roam around the
entire country while making sales calls, and they need to be granted access as well. It is assumed that each corporate
employee who works from home will only dial in to the set of ports for his respective location (i.e., Jill from Tempe
will only dial the Tempe number since she does not travel). However, the sales fleet needs access to the corporate
network and from there, the Internet, from wherever they happen to be. It is also assumed that the work-from-home
option is not offered to employees in the Chicago area.

The company wants as little administrative overhead as possible, although Acme's resources are a bit more extensive
and its budget considerably larger than Raleigh Internet's plan. How is this best accomplished? Figure 10-2 illustrates
the most effective solution.

Figure 10-2. Availability solution for a midsize corporation

Let's take a closer look at this solution. I have placed two fully functional RADIUS servers in each city's POP, with
one configured as the primary, always-on server and the other configured as a backup server for failover purposes in
case the primary server goes down. Based on the assumptions previously listed, I know that the users who work
from home in each city are the only ones that will be dialing that POP's number. By that assumption, I can simply sort
the users that need dial-in access by their city of residence and configure only those users on each city's RADIUS
servers. So the RADIUS servers in each city's POP will authenticate those users it knows about.

But that leaves out the fleet of mobile workers. How will they gain access? First, I have placed a three-node parallel
processing cluster of RADIUS servers—the core of the network—at the corporate head office in Chicago. These
servers know about every user with remote-access privileges in the entire company, so these machines are effectively
root servers, much in the same way that there are root DNS servers for the global Internet. The individual RADIUS
servers in Birmingham, Dallas, and Tempe will be configured as clients on the root RADIUS cluster in Chicago. So
when a mobile user dials a POP, and the POP does not explicitly know about those users, then the individual
RADIUS server forwards the request to the root servers.

So the mobile users are happy, the work-from-home users are happy, and your administrators are happy, too—the
user management in this design is a cinch since the servers in Tempe, Dallas, and Birmingham all depend on the
Chicago root nodes. All the administrators have to do is keep the corporate servers updated, which automatically
makes the clients rely on updated information.

In summary, here are the key strategies involved with this scenario:
 Determining a system baseline

The nominal active load of 225 ports system-wide was calculated.
 Managing explicit and derived requirements

Acme Machine Tools, LLC, needs to be able to service 1,470 active ports at a maximum across all POPs without
any special modifications. Again, the POPs must be equipped with servers that can handle such loads. The
accessibility of the service is more important with Acme than with Raleigh Internet, since the workers' ability to
connect to the network directly affects their ability to get corporate work done. Hence, access is mission critical.
 Analyzing risks of single points of failure

I have made the network design for the remote-access service as redundant as possible. The three-machine cluster
was placed in Chicago since all the POPs relied on the root servers for up-to-date user authentication information. If
the corporate servers went down, employees would be denied access, so a parallel-processing cluster was deemed
necessary. In each POP, the two-machine group (one primary, one backup standby for failover) was sufficient for
redundancy purposes.

There are other places for redundancy to be applied (in NAS gear, for instance, or in telephonic devices), but they
are beyond the scope of this discussion.

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

10.3 Other Things RADIUS

There are various other "mini-facets" of RADIUS that I haven't touched on in this book. This section is designed to
point you to alternative RADIUS servers, special RADIUS tools that are available to help you with your deployment
and day-to-day operation, and various documents that may assist you in learning more about RADIUS.

10.3.1 Other RADIUS Servers

There are several available RADIUS servers:
 Cistron RADIUS

Written by Miquel van Smoorenburg, this server has become widely used in the free-software community. It is
completely constructed from the original Livingston source. http://www.radius.cistron.nl
 GNU-radius

This server is—you guessed it!—another Cistron server-based RADIUS implementation, although unlike the other
variants a lot of the code has been rewritten. The server has a rewrite configuration file that is very convenient.
 ICRADIUS

This server is a variant of the Cistron server. It includes such added features as support for the MySQL database and
a front end in interactive HTML. http://radius.innercite.com
 Navis Access

Lucent's server is an extremely flexible, expandable, and scalable RADIUS server—but it is a commercial product.
 OpenRADIUS

This server is a completely new implementation with a foundation in the "modular" mind-set, in which all program
functionality is based on plug-in code that is completely under the control of the administrator.
http://www.xs4all.nl/~evbergen/openradius-index.html
 PerlRADIUS

This is an effort to write a RADIUS implementation in Perl. This effort seems to be another "me-too" effort: that is,
the developers are writing the code merely to say they have written the code. I see no useful benefit from this
distribution and, apparently, its development has recently gone on hiatus.
 Radiator

Another RADIUS server, this is written in Perl and is designed for use in smaller implementations.
 Steel Belted RADIUS

From Funk Software, this is a commercial product that runs on Windows servers.
 VOP RADIUS

From VOP Software, this is another commercially-available Windows-based RADIUS server.
 XtRADIUS

Another Cistron server deviate, XtRADIUS supports extensions for running external programs for accounting or
authentication. http://www.xtradius.com
 YARD RADIUS

This server is derived from the open sources of Livingston RADIUS Server Version 2.1. It has better configuration
support and extended features.

10.3.2 RADIUS Tools

The following tools may prove useful to you as you administer your RADIUS implementation.

•

The entire RADIUS attribute list is available at http://www.freeradius.org/rfc/attributes.html. Each attribute is
cross-referenced to the relevant RFC. This can be handy to have linked onto your management console's
desktop.

•

A RADIUS accounting log analysis program is available at
http://www.shenton.org/~chris/nasa-hq/dialup/radius. This site also provides a front-end for user password
changes and administration for Ascend gear.

•

The FreeRADIUS people have a user addition script available at their Related Software page at
http://www.freeradius.org/related/. They also have live links to the alternative RADIUS servers.

•

Paul Gregg has created the RadiusReport utility, available at
http://www.pgregg.com/projects/radiusreport/index.php. The utility, written in Perl, analyzes RADIUS logs
and creates numerous reports that contain valuable data.

This document is created with the unregistered version of CHM2PDF Pilot

http://www.radius.cistron.nl/default.htm
http://radius.innercite.com/default.htm
http://www.xs4all.nl/~evbergen/openradius-index.html
http://www.xtradius.com/default.htm
http://www.freeradius.org/rfc/attributes.html
http://www.shenton.org/~chris/nasa-hq/dialup/radius
http://www.freeradius.org/related/default.htm
http://www.pgregg.com/projects/radiusreport/index.php

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

Appendix A. Attribute Reference

In this Appendix, the RADIUS standard attributes are listed in order by their attribute number, followed by the
official name, the length of the attribute in the packet, and what type of value the attribute supports. Each attribute is
then cross-referenced with the main body page explaining the details of the attribute.

Table A-1. The RADIUS standard attributes

Number

Name

Length

Value

Page

1

User-Name

3+ octets

String

User-Name

2

User-Password

18-130

String

User-Password

3

CHAP-Password

19

String

CHAP-Password

4

NAS-IP-Address

6

IP Ad.

NAS-IP-Address

5

NAS-Port

6

Integer

NAS-Port

6

Service-Type

6

Enum

Service-Type

7

Framed-Protocol

6

Enum

Framed-Protocol

8

Framed-IP-Address

6

IP Ad.

Framed-IP-Address

9

Framed-IP-Netmask

6

IP Ad.

Framed-IP-Netmask

10

Framed-Routing

6

Enum

Framed-Routing

11

Filter-ID

3+ octets

String

Filter-ID

12

Framed-MTU

6

Integer

Framed-MTU

13

Framed-Compressio
n

6

Enum

Framed-Compressio
n

14

Login-IP-Host

6

IP Ad.

Login-IP-Host

15

Login-Service

6

Enum

Login-Service

16

Login-TCP-Port

6

Integer

Login-TCP-Port

17

(not in service)

18

Reply-Message

3+ octets

String

Reply-Message

19

Callback-Number

3+ octets

String

Callback-Number

20

Callback-ID

3+ octets

String

Callback-ID

21

(not in service)

22

Framed-Route

3+ octets

String

Framed-Route

23

Framed-IPX-Networ
k

6

Integer

Framed-IPX-Networ
k

24

State

3+ octets

String

State

25

Class

3+ octets

String

Class

26

Vendor-Specific

7+ octets

String

Vendor-Specific

27

Session-Timeout

6

Integer

Session-Timeout

28

Idle-Timeout

6

Enum

Idle-Timeout

29

Terminate-Action

6

Enum

Terminate-Action

30

Called-Station-ID

3+ octets

String

Called-Station-ID

31

Calling-Station-ID

3+ octets

String

Calling-Station-ID

32

NAS-Identifier

3+ octets

String

NAS-Identifier

33

Proxy-State

3+ octets

String

Proxy-State

34

Login-LAT-Service

3+ octets

String

Login-LAT-Service

35

Login-LAT-Node

3+ octets

String

Login-LAT-Node

36

Login-LAT-Group

34

String

Login-LAT-Group

37

Framed-AppleTalk-
Link

6

Integer

Framed-AppleTalk-
Link

38

Framed-AppleTalk-
Network

6

Integer

Framed-AppleTalk-
Network

39

Framed-AppleTalk-
Zone

3+ octets

String

Framed-AppleTalk-
Zone

40

Acct-Status-Type

6

Enum

Acct-Status-Type

41

Acct-Delay-Time

6

Integer

Acct-Delay-Time

42

Acct-Input-Octets

6

Integer

Acct-Input-Octets

43

Acct-Output-Octets

6

Integer

Acct-Output-Octets

44

Acct-Session-ID

3+ octets

String

Acct-Session-ID

45

Acct-Authentic

6

Enum

Acct-Authentic

46

Acct-Session-Time

6

Integer

Acct-Session-Time

47

Acct-Input-Packets

6

Integer

Acct-Input-Packets

48

Acct-Output-Packets

6

Integer

Acct-Output-Packets

49

Acct-Terminate-Cau
se

6

Enum

Acct-Terminate-Cau
se

50

Acct-Multi-Session-I
D

3+ octets

String

Acct-Multi-Session-I
D

51

Acct-Link-Count

6

Integer

Acct-Link-Count

52

Acct-Input-Gigawor
ds

6

Integer

Acct-Input-Gigawor
ds

53

Acct-Output-Gigawo
rds

6

Integer

Acct-Output-Gigawo
rds

54

(not in service)

55

Event-Timestamp

6

Integer

Event-Timestamp

56

(not in service)

57

(not in service)

58

(not in service)

59

(not in service)

60

CHAP-Access-Chall
enge

7+ octets

String

CHAP-Access-Chall
enge

61

NAS-Port-Type

6

Enum

NAS-Port-Type

62

Port-Limit

6

Integer

Port-Limit

63

Login-LAT-Port

4

Enum

Login-LAT-Port

64

Tunnel-Type

6

Enum

Tunnel-Type

65

Tunnel-Medium-Typ
e

6

Enum

Tunnel-Medium-Typ
e

66

Tunnel-Client-Endpoi
nt

3+ octets

String

Tunnel-Client-Endpoi
nt

67

Tunnel-Server-Endp
oint

3+ octets

String

Tunnel-Server-Endp
oint

68

Acct-Tunnel-Connec
tion

3+ octets

String

Acct-Tunnel-Connec
tion

69

Tunnel-Password

5+ octets

String

Tunnel-Password

70

ARAP-Password

18

String

ARAP-Password

71

ARAP-Features

16

String

ARAP-Features

72

ARAP-Zone-Access

6

Integer

ARAP-Zone-Access

73

ARAP-Security

6

Integer

ARAP-Security

74

ARAP-Security-Data

3+ octets

String

ARAP-Security-Data

75

Password-Retry

6

Integer

Password-Retry

76

Prompt

6

Integer

Prompt

77

Connect-Info

3+ octets

String

Connect-Info

78

Configuration-Token

3+ octets

String

Configuration-Token

79

EAP-Message

3+ octets

String

EAP-Message

80

Message-Authenticat
or

18

String

Message-Authenticat
or

81

Tunnel-Private-Grou
p-ID

3+ octets

String

Tunnel-Private-Grou
p-ID

82

Tunnel-Assignment-I
D

3+ octets

String

Tunnel-Assignment-I
D

83

Tunnel-Preference

6

Integer

Tunnel-Preference

84

ARAP-Challenge-Re
sponse

10

String

ARAP-Challenge-Re
sponse

85

Acct-Interim-Interval

6

Integer

Acct-Interim-Interval

86

Acct-Tunnel-Packets
-Lost

6

Integer

Acct-Tunnel-Packets
-Lost

87

NAS-Port-ID

3+ octets

String

NAS-Port-ID

88

Framed-Pool

3+ octets

String

Framed-Pool

89

(not in service)

90

Tunnel-Client-Auth-I
D

3+ octets

String

Tunnel-Client-Auth-I
D

91

Tunnel-Server-Auth-
ID

3+ octets

String

Tunnel-Server-Auth-
ID

92-191

(not in service)

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The animal on the cover of RADIUS is a Dolium shell. This shell is that of Orcula Dolium, one of a small family of
snails. Dolium live in leaf litter or on mossy rocks on mountains such as the Alps and the Carpathians. Their shells are
cylindrical, and they have rounded mouths and teeth. Their color varies from yellowish to reddish brown.

Darren Kelly was the production editor and Maureen Dempsey was the copyeditor for RADIUS. Octal Publishing,
Inc. provided production services and wrote the index. Sheryl Avruch and Claire Cloutier provided quality control.
Interior composition was done by Philip Dangler and Derek Di Matteo.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The cover image is a
19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress
4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted to FrameMaker 5.5.6 with a format conversion
tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans
Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read
using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher
Bing. This colophon was written by Linley Dolby.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and
Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray,
Benn Salter, John Chodacki, and Jeff Liggett.

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

AAA (authentication, authorization, and accounting)
 accounting
 attributes of
 authentication
 authorization
 Authorization Framework
 distributed services
 distribution of policies
 evaluation of policies
 infrastructure
 policies
 resource and session management
 roaming
 sequences
 terminology
AAA Working Group
access
 Apache Web authentication
 ARAP
 denying
Access-Accept packet
Access-Challenge packet
Access-Reject packet
Access-Request packet 2nd
accounting
 attributes
 client/servers
 communication
 multiple logins
 packets
 authenticator regions
 code regions
 identifier regions
 length regions
 reliability
 types
 parsing
 proxies
 updating
accounts
 direct connect
 system shell
Acct-Input-Gigawords attribute
Acct-Interim-Interval attribute
Acct-Output-Gigawords attribute
Acct-Tunnel-Connection attribute
Acct-Tunnel-Packets-Lost attribute
administration 2nd
agent sequence 2nd 3rd
allow_core_dumps option, FreeRADIUS
alternative servers
analysis of AAA policies
Apache Web authentication
 challenge-response method
 configuring
 limitations of
Apple Remote Access Protocol (ARAP)
applications, Web authentication
ARAP (Apple Remote Access Protocol)
ARAP-Challenge-Response attribute
ARAP-Features attribute
ARAP-Password attribute
ARAP-Security attribute
ARAP-Security-Data attribute
ARAP-Zone-Access attribute
architecture, AAA
Ascend terminal servers 2nd
attacks
 prevention of
 request authenticator
 User-Password attribute
Attribute Length field
Attribute Number field
attribute-value pairs (AVPs) 2nd
attributes
 of AAA
 of Access-Reject packets
 accounting 2nd
 Acct-Input-Gigawords
 Acct-Interim-Interval
 Acct-Output-Gigawords
 Acct-Tunnel-Connection
 Acct-Tunnel-Packets-Lost
 ARAP-Challenge-Response
 ARAP-Features
 ARAP-Password
 ARAP-Security
 ARAP-Security-Data
 ARAP-Zone-Access
 authentication methods
 binary
 Callback-ID
 Callback-Number
 Called-Station-ID
 Calling-Station-ID
 CHAP-Challenge
 CHAP-Password
 character strings
 Class
 Configuration-Token
 Connect-Info
 dates
 dictionaries
 EAP-Message
 enumerated types
 Event-Timestamp
 fields
 Filter-ID
 Framed-AppleTalk-Link
 Framed-AppleTalk-Network
 Framed-AppleTalk-Zone
 Framed-Compression
 Framed-IP-Address
 Framed-IP-Netmask
 Framed-IPX-Network
 Framed-MTU
 Framed-Pool
 Framed-Protocol
 Framed-Route
 Framed-Routing
 Idle-Timeout
 integers
 IP addresses
 Login-IP-Host
 Login-LAT-Group
 Login-LAT-Node
 Login-LAT-Port
 Login-LAT-Service
 Login-Service
 Login-TCP-Port
 Message-Authenticator
 NAS-Identifier
 NAS-IP-Address
 NAS-Port
 NAS-Port-ID
 NAS-Port-Type
 new extensions
 packets
 Password-Retry
 Port-Limit
 Prompt
 properties
 Proxy-State
 Reply-Message
 Service-Type
 Session-Timeout
 State
 Terminate-Action
 tunnel
 Tunnel Password
 Tunnel-Assignment-ID
 Tunnel-Client-Auth-ID
 Tunnel-Client-Endpoint
 Tunnel-Medium-Type
 Tunnel-Preference
 Tunnel-Private-Group-ID
 Tunnel-Server-Auth-ID
 Tunnel-Server-Endpoint
 Tunnel-Type
 tunneling protocols
 types of
 User-Name
 User-Password
 attacks
 request authenticator attacks
 shared secrets
 stream cipher scheme
 values
 vendor-specific
 Vendor-Specific
authentication
 AAA Authentication Framework
 ARAP
 EAP
 LDAP Directory Service
 methods
 MySQL
 OTP
 PAM
 users file, FreeRADIUS
 Web
authentication, authorization, and accounting [See AAA]
authenticators
 regions 2nd
 request attacks
authorization 2nd
automated linking of requests
availability
 cost effective network topologies
 maintaining
 of servers
 of services
AVPs (attribute-value pairs) 2nd

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

baselines, establishing
behavior, normal system
binary types
bind_address option, FreeRADIUS
block ciphers

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

calculations of packet use
callback
Callback-ID attribute
Callback-Number attribute
Callback-Station-ID attribute
Calling-Station-ID attribute
certificates, digital
challenge-response method
Challenge/Handshake Authentication Protocol [See CHAP]
CHAP (Challenge/Handshake Authentication Protocol) 2nd 3rd 4th
CHAP-Challenge attribute
CHAP-Password attribute
character string types
ciphers
ciphertext
Cisco terminal servers 2nd
Class attribute
cleanup_delay option, FreeRADIUS
clients
 accounting
 differentiating between AAA and RADIUS
 EAP
 trust relationships in end-to-end models
clients file, FreeRADIUS
clients.conf file
code regions 2nd
cold standby servers
communication
 accounting
 types of transactions
 of UDP packets
CommuniGate Pro 2nd
comparisons of UDP and TCP
compression
concealing
 passwords
 values
Configuration-Token attribute
configuring
 AAA servers
 CommuniGate Pro
 FreeRADIUS 2nd
 clients file
 clients.conf file
 customizing radiusd.conf file
 hints file
 huntgroups file
 naslist file
 naspasswd file
 radiusd.conf file
 testing
 users file 2nd
 LDAP Directory Service
 mod_auth_radius module
 MySQL
 PAM
 RADIUS
 realms
 services
Connect-Info attribute
connection accounts
conversations, EAP
cookies
 Apache Web authentication
 challenge-response authentication method
cost effective network topologies
customizing FreeRADIUS

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

DaemonTools
databases
date types
declared identities
default connection configurations
DEFAULT entries, FreeRADIUS
delete_blocked_requests option, FreeRADIUS
denying access
deployment
 alternative servers
 availability of services
 cost effective network topologies
 services
design
 AAA
 realms
development
 of FreeRADIUS
 of RADIUS
Dialed Number Identification Service (DNIS)
dictionaries
digital certificates
direct connect accounts
directives
 proxy servers
 radiusd.conf file
distributed services
 AAA
 models
distribution of AAA policies
DNIS (Dialed Number Identification Service)
documentation of resources
dynamic encryption

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

EAP (Extensible Authentication Protocol) 2nd
EAP-Message attribute
enabling PAM
encapsulated security payload (ESP)
encapsulation
encryption
end-to-end transactions
entries
 clients.conf file
 DEFAULT, FreeRADIUS
enumerated types
environments, design of AAA
errors [See troubleshooting]
ESP (encapsulated security payload)
establishing baselines
evaluation of AAA polices
Event-Timestamp attribute
extended expressions
Extensible Authentication Protocol (EAP) 2nd
extensions

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

fault tolerance, MySQL
fields
 Attribute Length
 Attribute Number
 attribute values
 attributes
 authenticator
 identifiers
 length
 Value
files
 clients.conf
 configuration, FreeRADIUS
 parsing
 proxy.conf
 splitting
 storing dictionaries
 users, FreeRADIUS
Filter-ID attribute
formats
 accounting packets
 authenticator regions
 code regions
 identifier regions
 length regions
 reliability
 attributes
 baselines
 passwords
 UDP packets
FQDN (fully qualified domain name)
Framed-AppleTalk-Link attribute
Framed-AppleTalk-Network
Framed-AppleTalk-Zone
Framed-Compression
Framed-IP-Address
Framed-IP-Netmask attribute
Framed-IPX-Network attribute
Framed-MTU attribute
Framed-Pool attribute
Framed-Protocol attribute
Framed-Route attribute
Framed-Routing attribute
frameworks, AAA Authentication
FreeRADIUS
 clients.conf file
 customizing
 DEFAULT entries
 installing
 clients file
 hints file
 huntgroups file
 naslist file
 naspasswd file
 radiusd.conf file
 testing
 users file
 linking errors
 monitoring
 multiple logins
 MySQL
 NAS gear
 origin of
 PAM
 prefixes/suffixes
 proxying
 troubleshooting 2nd
 versions
fully qualified domain name (FQDN)
functionality
 of AAA
 of Apache

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

generating reports, RadiusReport
geographic areas
group file, FreeRADIUS

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

hiding values
hints file, FreeRADIUS
hints, RADIUS
history of RADIUS
hop-to-hop transactions 2nd
hostname_lookups option, FreeRADIUS
hot standby servers
huntgroups file, FreeRADIUS

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

identifiers
 realms
 regions 2nd
identities
 of accounting packets
 verifying
Idle-Timeout attribute
implementation
 of dictionaries
 tools
 of AAA
increasing processing power
independent trust relationships
infrastructure
 AAA
 PKI
installing
 FreeRADIUS
 clients file
 hints file
 huntgroups file
 naslist file
 naspasswd file
 radiusd.conf file
 testing
 users file
 OpenLDAP
integer types
interaction of systems
interim accounting updates
Internet Research Task Force (IRTF)
IP address types
IRTF (Internet Research Task Force)

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

keystreams

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

LAT (Local Area Transport)
LDAP Directory Service
 CommuniGate Pro
 configuring
length of regions 2nd
limitations
 of mod_auth_radius module
 of RADIUS
 of security
linking errors, FreeRADIUS
Local Area Transport (LAT)
local realms
log files, RadiusSplit
log option, FreeRADIUS
login, FreeRADIUS
Login-IP-Host attribute
Login-LAT-Group attribute
Login-LAT-Node attribute
Login-LAT-Port attribute
Login-LAT-Service attribute
Login-Service attribute
Login-TCP-Port attribute
lower_pass option, FreeRADIUS
lower_user option, FreeRADIUS

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

maintaining availability
management 2nd 3rd
max_request_time option, FreeRADIUS
max_requests option, FreeRADIUS
MD5, shared secrets
measurement
 of resources
 of packets
Message-Authenticator attribute
messages
 code regions
 length of
methods, authentication
mod_radius_auth module
 challenge-response method
 configuring
 functionality of
 limitations of
models
 AAA 2nd
 distributed services
modifying RADIUS
monitoring
 FreeRADIUS
 services
multiple logins, FreeRADIUS
multiple servers, troubleshooting
MySQL
 FreeRADIUS
 optimizing

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

names, configuring realms
namespaces, AAA policies
NAS gear, FreeRADIUS
NAS-Identifier attribute
NAS-IP-Address attribute
NAS-Port attribute
NAS-Port-ID
NAS-Port-Type attribute
naslist file, FreeRADIUS
naspasswd file, FreeRADIUS
network operation centers (NOCs)
networks
 cost effective topologies
 P2P
new extensions attributes
NOCs (network operation centers)
non-semantic integer values
normal system behavior
Nortel terminal servers
nospace_pass option, FreeRADIUS
nospace_user option, FreeRADIUS
NULL realms

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

objects, forming trust relationships
one-time password (OTP)
OpenLDAP
operating system authentication methods
optimizing
origins
 of FreeRADIUS
 of RADIUS 2nd
OTP (one-time password)

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

P2P (peer-to-peer)
packets
 Access-Accept
 Access-Challenge
 Access-Reject
 Access-Request 2nd
 accounting 2nd
 authenticator regions
 code regions
 identifier regions
 length regions
 reliability
 types
 attributes
 CHAP
 measurement of
 PAP
 restricting attributes
 types
 UDP
PAM (pluggable authentication module) 2nd
PAP (Password Authentication Protocol)
parsing files
Password Authentication Protocol (PAP)
Password-Retry attribute
passwords
 attacks
 CHAP
 CHAP-based
 CHAP-Password attribute
 concealing
 LDAP Directory Service
 limitations of mod_auth_radius module
 MySQL
 OTP
 restricting
 strength of
 troubleshooting
payloads
 Access-Reject packets
 value fields
PDP (policy description point)
peer-to-peer (P2P)
PIBs (policy information blocks)
pidfile option, FreeRADIUS
PIPs (policy information points)
PKI (public key infrastructure)
pluggable authentication module (PAM) 2nd
pointers, radiusd.conf file
policies, AAA
policy description point (PDP)
policy information blocks (PIBs)
policy information points (PIPs)
policy retrieval point (PRP)
port option, FreeRADIUS
Port-Limit attribute
prefix realms
prefixes, FreeRADIUS
prevention of attacks
processes, AAA
processing power, increasing
Prompt attribute
properties
 of accounting packets
 of attributes 2nd
 of RADIUS
 tracking attributes
protocols
 AAA
 ARAP
 authentication methods
 CHAP
 EAP 2nd
 PAP
 purpose of
 TCP
 tunneling
 UDP
proxy chains
 Access-Request packets
 PAP
Proxy-State attribute
proxying
 accounting
 FreeRADIUS
PRP (policy retrieval point)
public key infrastructure (PKI)
pull sequence 2nd 3rd
purpose of RADIUS protocol
push sequence 2nd 3rd

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

QoS (quality of service)
queries, FreeRADIUS

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

RADIUS
 callback feature
 configuring
 limitations of
 modifying
 origin of
 origins of
 properties of
 purpose of
 tools
radiusd.conf file, FreeRADIUS 2nd
RadiusReport
 generating reports
 RadiusSplit
RadiusSplit
realms
 FreeRADIUS
 MySQL
redundancy 2nd
regions
 authenticator 2nd
 code 2nd
 identifier 2nd
 length 2nd
regular expressions, FreeRADIUS
relationships, trust 2nd
reliability
 of authenticators
 of accounting packets
Remote Access Dialin User Service [See RADIUS]
remote servers
 direct connect accounts
 system shells accounts
replies, troubleshooting
Reply-Message attribute
reports
 AAA
 FreeRADIUS
 generating
requests
 AAA
 Access-Accept packet
 Access-Challenge packet
 Access-Reject packet
 Access-Request packet
 accounting
 authenticator attacks
 authenticators
 automated linking of
 RADIUS hints
 validation of
requirements, baselines
resources
 AAA management
 measurement of
responses
 Access-Accept packets
 Access-Reject packets
 authenticators
restrictions of attributes
retransmisison timers
RFC 2869, new extension attributes
roaming
 AAA
 agent sequence
 pull sequence
 push sequence
Roamops (Roaming Operations Working Group)
rules, AAA

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

scalability of AAA
secrets
 accounting
 concealing values
 MD5
 User-Password attribute
security
 EAP
 encryption
 limitations of
 shared secrets
 strength of passwords
 TLS
 vulnerabilities
selection of passwords
semantic integer values
sequences
 AAA
 agent 2nd
 pull 2nd
 push 2nd
 roaming 2nd 3rd
servers
 AAA
 accounting
 availability of
 configuring AAA
 differentiating between AAA and RADIUS
 direct connect accounts
 EAP
 FreeRADIUS
 monitoring
 multiple
 proxy
 redundancy
 system shell accounts
 troubleshooting
 trust relationships in end-to-end models
Service Provider (SP)
Service-Type attribute
services
 availability of
 configuring
 monitoring
Session-Timeout attributes
sessions
 AAA management
 documentation of
shared secrets
 accounting
 MD5
 User-Password attribute
shell accounts
smart implementations of AAA
snooping, prevention of
SP (Service Provider)
splitting log files
Stalker Software
starting
 accounting
 FreeRADIUS
 clients file
 hints file
 huntgroups file
 linking errors
 naslist file
 naspasswd file
 radiusd.conf file
 testing
 users file
 PAM
State attribute
storing dictionaries
stream ciphers
strength of passwords
strengthening security
structures
 Access-Accept packets
 Access-Challenge packets
 Access-Reject packets
 Access-Request packet
 UDP packet formats 2nd
suffixes
 FreeRADIUS
 realms
support of different models
system shell accounts
systems, interaction of

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

TCP (Transmission Control Protocol)
templates, AAA
terminal servers 2nd
Terminate-Action attribute
terminology
 AAA
 AAA Authentication Framework
testing FreeRADIUS
text, dictionary files
threading identifier regions
3COM 2nd
timers, retransmission
TLS (Transport Level Security)
tools
topologies, cost effect of
tracking attribute properties
traffic
 ARAP
 availability of services
transactions
 accounting attributes
 authorization sequences
 CHAP-Challenge attribute
 mod_radius_auth module
 MySQL
 packet types
 PAM
 PAP
 RADIUS hints
 security
 trust relationships
 updating accounting
Transmission Control Protocol [See TCP]
transmissions, attributes
Transport Level Security (TLS)
3DES (triple data encryption)
troubleshooting
 availability of services
 CHAP
 FreeRADIUS 2nd 3rd
 multiple servers
 passwords
 RADIUS
 replies
trust relationships 2nd
 client/servers in end-to-end models
 hop-to-hop transactions
tunnel attributes
Tunnel-Assignment-ID attribute
Tunnel-Client-Auth-ID attribute
Tunnel-Client-Endpoint attribute
Tunnel-Medium-Type attribute
Tunnel-Password attribute
Tunnel-Preference attribute
Tunnel-Private-Group-ID attribute
Tunnel-Server-Auth-ID attribute
Tunnel-Server-Endpoint attribute
Tunnel-Type attribute
tunneling protocols
types
 accounting packets
 of attributes
 binary
 character strings
 dates
 enumerated
 integers
 IP addresses
 UDP packets
 vendor-specific

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

UDP (User Datagram Protocol)
 comparing to TCP
 packet formats
 packet types
UHO (User Home Organization) 2nd
updating accounting
US Robotics terminal servers 2nd
User Datagram Protocol [See UDP]
User Home Organization (UHO) 2nd
User-Name attribute
User-Password attribute
 attacks
 request authenticator attacks
 shared secrets
 stream cipher scheme
user-specific configurations
usernames [See names]
users file
 denying access
 FreeRADIUS 2nd 3rd
utilities

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

validation
 of code regions
 of requests
Value field
values
 attributes 2nd
 realms
 shared secrets
vendor-specific attributes 2nd 3rd
verification
versions of FreeRADIUS
vulnerabilities, security

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

warm standby servers
Web authentication 2nd
workarounds, security

[Team LiB]

This document is created with the unregistered version of CHM2PDF Pilot

	Main Page
	Table of content
	Copyright
	Preface
	Audience
	Organization
	Conventions Used in This Book
	How to Contact Us
	Acknowledgments

	Chapter 1. An Overview of RADIUS
	1.1 An Overview of AAA
	1.2 Key Points About AAA Architecture
	1.3 The Authorization Framework
	1.4 And Now, RADIUS

	Chapter 2. RADIUS Specifics
	2.1 Using UDP versus TCP
	2.2 Packet Formats
	2.3 Packet Types
	2.4 Shared Secrets
	2.5 Attributes and Values
	2.6 Authentication Methods
	2.7 Realms
	2.8 RADIUS Hints

	Chapter 3. Standard RADIUS Attributes
	3.1 Attribute Properties

	Chapter 4. RADIUS Accounting
	4.1 Key Points in RADIUS Accounting
	4.2 Basic Operation
	4.3 The Accounting Packet Format
	4.4 Accounting Packet Types
	4.5 Accounting-specific Attributes

	Chapter 5. Getting Started with FreeRADIUS
	5.1 Introduction to FreeRADIUS
	5.2 Installing FreeRADIUS
	5.3 In-depth Configuration
	5.4 Troubleshooting Common Problems

	Chapter 6. Advanced FreeRADIUS
	6.1 Using PAM
	6.2 Proxying and Realms
	6.3 Using the clients.conf File
	6.4 FreeRADIUS with Some NAS Gear
	6.5 Using MySQL with FreeRADIUS
	6.6 Simultaneous Use
	6.7 Monitoring FreeRADIUS

	Chapter 7. Other RADIUS Applications
	7.1 RADIUS for Web Authentication
	7.2 Using the LDAP Directory Service
	7.3 Parsing RADIUS Accounting Files

	Chapter 8. The Security of RADIUS
	8.1 Vulnerabilities
	8.2 The Extensible Authentication Protocol
	8.3 Compensating for the Deficiencies
	8.4 Modifying the RADIUS Protocol

	Chapter 9. New RADIUS Developments
	9.1 Interim Accounting Updates
	9.2 The Apple Remote Access Protocol
	9.3 The Extensible Authentication Protocol
	9.4 Tunneling Protocols
	9.5 New Extensions Attributes

	Chapter 10. Deployment Techniques
	10.1 Typical Services
	10.2 RADIUS and Availability
	10.3 Other Things RADIUS

	Appendix A. Attribute Reference
	Colophon
	Index
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index K
	Index L
	Index M
	Index N
	Index O
	Index P
	Index Q
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W

